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1. MAIN MESSAGES FOR OIL SANDS MONITORING 

 

The ACME Lab’s Oil Sands Monitoring (OSM) Mammal Monitoring Program was 

funded as requested for 2024-2025. We delivered on field monitoring for four Landscape Units 

under the BADR design. Here we report the summary statistics from that program. We also use 

OSM-BADR data to answer core questions of the OSM program, as well as questions posed last 

year by the Terrestrial Biological Monitoring’s (TBM) Technical Advisory Committee (TAC) 

and Science and Indigenous Knowledge Integration Committee (SIKIC), highlighted in the 

2024-2025 TBM Workplan. 

 

Core Questions 

 1. Has the abundance of wildlife species changed? The answer is yes, as evidenced by all 

of the papers reviewed in Roberts et al. (2022) and the papers on boreal mammal 

communities(Fisher and Burton 2018, Burgar et al. 2019, Tattersall et al. 2020a, b, Beirne et al. 

2021a, Fisher et al. 2021a, Fisher et al. 2021c, Wittische et al. 2021b, Fisher and Ladle 2022b, 

Sun et al. 2022, Boczulak et al. 2023, Barnas et al. 2024c) we have published in the past years of 

the program..  The outcomes of this year’s analyses (below) continue to corroborate these 

conclusions: the abundance of wildlife species has changed, and OS activities are a driver of that 

change. In the 2024-5 report, we dive into three key mammal species identified by scientists and 

Indigenous communities as important indicators of boreal communities: white-tailed deer, black 

bears, and coyotes.  

2. To what extent is that change driven by oil sands activities? That same research shows 

that the effect sizes (the strength of a stressor-response relationship) of some OS features can be 

greater than roads or forest harvesting, depending on the species examined, and the ecological 

context considered (Fisher et al. 2021c, Wittische et al. 2021b, Aubertin-Young 2022, Darlington 

et al. 2022, Fisher and Ladle 2022b, Roberts et al. 2022, Boczulak et al. 2023, Fuller et al. 2023, 

Barnas et al. 2024c). Seismic lines are important but so are other linear and polygonal features. 

The 2024-2025 analysis examines the spatial scales at which features have the greatest impact on 

different species, and what zone of influence each of these features has on boreal mammal 

species. This work is covered in Chapter 4, with a separate complementary analysis in the 

ABMI-UVIC joint deliverable. 



 5 

3. What are the cumulative effects of oil sands pressures on wildlife? We have shown that 

anthropogenic features affect mammal species (Fisher et al. 2020, Fisher et al. 2021c, Wittische 

et al. 2021b, Boucher et al. 2022, Darlington et al. 2022, Fisher and Ladle 2022b, Fuller et al. 

2022) – OS features play a demonstrable role, but are not alone in this. Multiple forms of 

disturbance, including forest harvest and transportation, alter boreal mammal communities. 

Parsing apart the relative contributions of various features to causing boreal mammal community 

change is the goal of ongoing analyses and is addressed in all chapters. 

 
2024-2025 Questions 

 

In the 2024 Workplan, we outlined these knowledge gaps: 

1. How do mammal responses to OS activities change over time? 

The answer to this question is the key target of the BADR’s 3-year rotation design. The first 

series of data were collected in 2021 and in the 2024 year we started to collect the first re-

samples of the original Landscape Units. 

2. How do mammals’ response to OS activities change with context across the OSR; that is, 

do species respond negatively to OS activities under some conditions and positively 

under others? How do mammal densities change in response to OS activities, within an 

LU and between LUs?  

 In this year we built toward answering this question by sampling the last four remaining 

Landscape Units identified in the BADR design. These data were collected in fall 2024, image-

analyzed in winter 2024, and data-analyzed in spring 2025. This analysis a multi-stage process 

that will push into the 2025-2026 year. The first step in this analysis is to determine the spatial 

scale at which OS and other industrial features affect each boreal mammal species. 

Understanding this scale dependence is key to further analysis and to informing landscape 

planning and restoration. This question is addressed in the several chapters herein. 

3. Which OS features most strongly affect indicator species’ relative abundance and 

distribution? 

To bridge this gap, we utilise structural equation modelling to identify which OS stressors 

significantly contribute to changes in mammal distribution, and how these compare to 

cumulative effects stressors. We examine linkages identified in the TBM conceptual model and 

estimate the effect sizes for these different linkages, to show which features (and modelled 
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species-feature processes) have the greatest effect on a key species indicator: white-tailed deer 

(Chapter 7). We outline an approach that we are planning to pursue in 2025-2026 that we suspect 

will yield new insights into the relative effects of different OS features on mammal species. 

 

2. 2024-2025 MAMMAL MONITORING: LANDSCAPE UNIT CAMERA 

DEPLOYMENT 

 

Overview 

Mammal monitoring at the scale of landscape units (LUs) followed the OSM Terrestrial 

Biological Monitoring (TBM)’s Before-After Dose-Response (BADR) design (Bayne et al. 

2021b). In 2024-2025 we sampled four LU’s identified using the BADR design (Figure 1): LU 

09, 14, 16 and 22. We also deployed resampling of the first LU’s first sampled in 2021 – LUs 02 

and 03 – as well as deployed new sampling for LUs 04 and 08, which had not been supported in 

the funding decision of 2021 (Figure 1). 

 

Sampling Design 

In addition to the JEM sites selected by the TBM team and embedded in each LU, 40-50 

cameras were deployed across each LU in a stratified random design to minimise correlation 

among environmental covariates and spread sampling effort across the range of natural 

heterogeneity. The landscape was stratified into dominant (> 50%) forest classes: conifer forest, 

deciduous forest, and mixedwood forest, using similar criteria as for JEM sites. The intent is to 

distribute the cameras somewhat evenly among these strata, to “control” for natural variability 

while examining the role of industrial features on mammal communities. 

In ArcGIS the landscape was overlain by a hexagonal grid of 2-km2 cells. This cell size 

allows us to space cameras sufficiently far apart to allow some degree of independence (Diniz‐

Filho et al. 2003, Hawkins et al. 2007, Gilbert et al. 2020) for species-habitat models, typically 

conducted in a linear regression framework (Fisher and Burton 2018, 2020, Fisher et al. 2020). It 

also meets the requirements of density estimation models, which require at least 2-3 cameras be 

deployed within an individual’s home range size, such that it could be detected on multiple 

cameras (Royle et al. 2014, Sun et al. 2014, Burgar et al. 2018, Burgar et al. 2019).  
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Figure 1. The OSM TBM’s BADR design showing the 12 LUs selected for sampling, 

and the years sampled.  
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Using data from a review of mammal home ranges sizes (Holling 1992) and analyses of 

caribou (Dalerum et al. 2007) and white-tailed deer (Fisher et al. 2016) from the region, we 

determined the smallest  home-range size was for white-tailed deer and that a 2-km2 cell size 

would accommodate model requirements.  

Where possible we constrained the resulting hexagonal grid to cells within 100-m of a 

vehicle-accessible road or trail, as determined by ABMI human footprint inventory. This 

logistical necessity reduced expensive helicopter time, although in the low-disturbance landscape 

helicopter access was required for access to all sites. We then randomly selected 30 cells from 

each of the three strata. When we could not find 30 cells within each stratum, we relaxed the 

definition of “upland” or “lowland” from > 50% of the cell to > 25% of the cell, and then 

randomly selected sites to yield a complete set of candidate sites. 

In the field, the deployment team visited each accessible cell and identified active 

wildlife trails suitable for deployment within that cell (ensuring that cameras within adjacent 

cells were the minimum 1-km apart); this increases probability of detection given animal 

presence within the cell (MacKenzie et al. 2002, MacKenzie and Royle 2005, MacKenzie et al. 

2017a), as data density is important to make statistical models function (Burgar et al. 2019). No 

bias is expected(Stewart et al. 2019a) as game trails represent where wildlife use these complex 

landscapes; in fact not using game trails biases estimates downward, because one is sampling 

places that animals do not use, or use very rarely. One Reconyx PC900 or Hyperfire II camera 

(Holmen, WI, USA) was deployed within the hex cell and secured to a tree using a Reconyx lock 

box and a python cable lock. The statistical unit is thus the cell, not the site itself, and the cell is 

the basis for modelling and inference. At a subset of sites, ABMI deployed an additional camera 

directly at the cell centroid to represent a random paired site which will allow for improved inter-

operability of datasets for different density estimation methods(Nakashima et al. 2018, 

Nakashima et al. 2020). This design was fully integrated with the JEM-site scale sampling. That 

is, where a JEM site falls within a cell, the JEM site was used – there is no double-sampling. 

This integrated approach is not only more cost-effective, but it also allows us to conduct cross-

scale comparisons key to the hierarchical BADR design. The final deployment spanned major 

gradients of interest across the LUs (Figure 1). 
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Sampling began in 2021 where funding for two LU’s was approved, switching to four 

LU’s per year as described in the full BADR implementation.  The LU mammal monitoring data 

now available are summarised in Figure 2. 

 

 
Figure 2. The timeline of camera deployments for the OSM TBM’s mammal monitoring. To 

date 10 LU’s have been fully sampled, two are being re-sampled, and two are being sampled for 

the first time due to being declined for monitoring in 2021. 
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3. 2024-2025 MAMMAL MONITORING: LANDSCAPE UNIT DATASET SUMMARY 

 

Monitoring Results to Date 

 Workplan approvals for this fiscal year were provided April 11, 2024. The AEP research 

agreement with UVIC was signed July 2024. Camera collection and deployment occurred 

September – October 2024. A one-year sample is required for most effective LU-scale mammal 

monitoring, consistent with all our past camera-trapping research in the boreal forest(Fisher and 

Burton 2018, Burgar et al. 2019, Fisher and Burton 2020, Fisher et al. 2020, Tattersall et al. 

2020b, a, Fisher et al. 2021a, Fisher et al. 2021c, Wittische et al. 2021b, Fisher and Ladle 2022b, 

Frey et al. 2022, Sun et al. 2022). We made the decision to collect cameras deployed in 2024 in 

September 2025, so image classification of those cameras will occur at that time. Herein, we 

provide an update of data collected Fall 2024 (deployed 2023). 

LU09 Array (In-situ)  

 Coyote and white-tailed deer are two of the most abundant and widespread species in 

LU09. Coyote occupied 94% of sampling sites, and white-tailed deer 92%. Snowshoe hare 

(70%) and red squirrel (92%) were also abundant and widespread, as were black bears (80%). 

Furbearers’ marten and fisher were unusually widespread (56% each) although with very low 

relative abundance. Moose, a key indicator for Indigenous communities, was almost absent from 

this landscape (9 detections, 16% occupancy). 

LU14 array (Low development) 

 Red squirrel (92%), black bear (82%), and snowshoe hare (73%) are the 3 most abundant 

and widespread species in this LU. Unlike the in-situ array, moose are widespread (69%) and 

abundant here. Lynx, fisher, wolves, and marten have intermediate occupancy and abundance. 

Invasive white-tailed deer are not abundant (68 detections) nor as widespread as in the in-situ LU 

(45%). Likewise, coyotes are not abundant (32) and not widespread (29% occupancy). 

LU16 Array (Mine-Adjacent) 

 Coyote is the most widespread mammal in this LU (94% occupancy), but white-tailed 

deer are less so, at 63% occupancy. Red squirrel black bear, and snowshoe hare have the highest 

relative abundance and high occupancy (92, 86, 82%). Moose have intermediate relative 

abundance but are widespread (73% occupancy). Furbearers’ lynx, marten, red fox, and fisher 

have low relative abundance but higher occupancy than in-situ landscapes (71, 45, 39, 3%).  
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LU22 Array (Pre-in-situ) 

 Black bear (90% occupancy), fisher (84% occupancy), snowshoe hare (76% occupancy), 

and red squirrel (76%) are the most widespread mammal species with the highest relative 

abundance in this pre-in-situ, relatively low-disturbance LU. Coyote is likewise widespread 

(82%) but with half the relative abundance compared to the in-situ landscape (218 vs 518 

independent detections). White-tailed deer are likewise widespread (74% occupancy) but with 

9% the relative abundance than in the in-situ landscape (125 vs 1402 detections) and 1.8 times 

higher relative abundance than the low-development landscape with (125 vs. 68 detections). 

Notably, moose are not all widespread here (26% occupancy) and are not abundant (18 

detections).  
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ACME Lab Public Data Portal 

 The ACME Lab’s data portal lists maps and metadata for OSM’s TBM Mammal 

Monitoring Program for 2021-2024: (http://www.acmelab.ca/dataportal.html#Boreal).  

This portal describes where and when monitoring has occurred. Here, data associated with 

research is permanently archived with associated DOI’s. Each LU is linked as its own project, 

and each project contains: 

1. GIS shapefiles of the deployment sites. 

2. Landcover covariates around each camera site, as derived from the ABMI’s Wall-to-Wall 

Land Cover Inventory (https://abmi.ca/home/data-analytics/da-top/da-product-

overview/Data-Archive/Land-Cover.html).  

3. Anthropogenic feature covariates around each camera site, as derived from the ABMI’s 

Wall-to-Wall Human Footprint Inventory (https://abmi.ca/home/data-analytics/da-top/da-

product-overview/Human-Footprint-Products/HF-inventory.html).  

4. Data extracted from camera images using TimeLapse Image Analyzer 2.55(Greenberg et 

al. 2019b) in CSV format. 

5. Dataframes for R statistical software(R Core Team 2024b) that merge all the associated 

datasets and provide code for exploring the modelling the data. 

  

http://www.acmelab.ca/dataportal.html#Boreal
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Data-Archive/Land-Cover.html
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Data-Archive/Land-Cover.html
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html
https://abmi.ca/home/data-analytics/da-top/da-product-overview/Human-Footprint-Products/HF-inventory.html
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4. SELECTING SPATIAL SCALES FOR UNDERSTANDING SPECIES RESPONSES 

TO ANTHROPOGENIC LANDSCAPE CHANGE WITH CAMERA TRAP DATA 

 

Marissa A. Dyck, Rebecca M. Smith, Emerald Arthurs, Megan Braun, Shay Marks, Andrew F. 

Barnas, Jason T. Fisher 

 

OSM SUMMARY 

 A key question for understanding OS impacts and for managing OS landscapes, is “Does 

the density of OS features close by, or aggregated in larger landscapes, affect a species’ 

occurrence within a landscape?” Does a seismic line just affect the animals on that line, or do 

the effects of multiple lines accrue as lines increase in density? The same question applies to all 

anthropogenic features in the OSR. This question is the topic of the ABMI-UVIC joint 

deliverable, in which we compare the results of JEM-site monitoring on- and near-features, to the 

LU-scale monitoring which aggregates feature density. Here we dig even deeper into that 

question by modeling the effects of industrial feature density on multiple mammal species across 

20 scales. We find that there is no consistent scale that explains the response of mammals to OS 

and other features, but that aggregate feature densities are critical to explaining outcomes for 

mammal in these landscapes. We show that some species respond to local-scale densities 

whereas others have much larger-scale responses, signalling population outcomes. This 

information helps us understand how OS features affect mammals, to guide recommendations for 

mitigation and better landscape management. 

 

INTRODUCTION 

Anthropogenic landscape change has drastically altered Earth’s ecosystems; more than 

75% of ice-free land has undergone human-induced modification (Ellis and Ramankutty 2008). 

This level of landscape change has profound effects on ecological systems, leading to numerous 

conservation crisis including accelerated rates of species loss and global climate change (Dirzo et 

al. 2014, Ceballos et al. 2015, Ceballos et al. 2017, Trenberth 2018). Energy development is one 
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driving force of landscape change in the current Anthropocene Epoch, and results of energy 

exploration and extraction activities create complex landscapes and systems. As energy 

development activities continue, an overarching ecological unknown is to understand how 

species respond to these novel disturbance environments. Disentangling the effects of landscape 

change in these complex systems is challenging especially since species may respond to 

disturbances in different ways depending on the landscape context (Fidino et al. 2021b, Barnas et 

al. 2024c). Management decisions to address changes in complex human-altered systems 

therefore not only require robust data but also replicated samples from which to draw reliable 

inferences.  

In turn, remote camera traps have become a widely used technique particularly for 

studying wide-ranging terrestrial mammals (Trolliet et al. 2014). Remote camera traps allow for 

investigation across large spatial scales and temporal extents (Burton et al. 2015a), are 

minimally-invasive (Kelly et al. 2012, Meek et al. 2014), and facilitate synthetic approaches 

between groups (Steenweg et al. 2017b, Cove et al. 2021). Data generated from camera trap 

studies allow for species-specific inferences on behavior (Caravaggi et al. 2017, Barnas et al. 

2022b), habitat use and density (Jacques et al. 2019, Dyck et al. 2022, Iosif et al. 2022, Ethier et 

al. 2024a), and allow for estimating how these factors change with landscape change (Fisher and 

Burton 2018).  

Species occurrence data from camera traps are often used to examine relationships 

between species and their environment, where occurrence is analyzed in relation to spatial 

resource availability (Shurin et al. 2002, Wiewel et al. 2007). The theoretical basis for these 

analyses stems from optimal foraging and risk-reward theories (Pyke 1984, Holbrook and 

Schmitt 1988a), which assume that animals select habitat based on available resources and 



 19 

perceived risks. However, applying these concepts to camera trap data introduces challenges, 

particularly in defining the spatial scale at which landscape features influence habitat selection. 

Mammal responses to landscape features depends on the scale at which the features are measured 

in relation to camera trap placement. For example (Figure 1), a camera placed in dense forest 

directly adjacent to a forestry cutblock may provide abundant early forage for moose (Alces 

alces) and nearby escape cover (Johnson and Rea 2023). If we consider only this small spatial 

scale, we may predict high relative moose abundance. However, when considering the larger 

spatial extent around the camera site, high-density anthropogenic linear features will facilitate 

predator incursion into the area, and we may predict lower relative moose abundance as a result. 

This problem of scale is central to ecological inquiry (Levin 1992), and ecologists 

recognized its existence as early as the 1930s (Urban 2014). The early theoretical groundwork 

helped establish landscape ecology as a field (MacArthur and Levins 1964, Sarkar 1984, Wiens 

1989, Allen and Hoekstra 1992) and many empirical studies have aimed to assess how species 

respond to stressors at different scales and the relative roles of factors operating at each scale 

(Turner 1989, Chave 2013, Lawler and Torgersen 2020). The knowledge that ecological 

processes operate at different scales is now well established and critical to our understanding of 

ecological systems (Levin 1992, Lawler and Torgersen 2020). Therefore, several theories have 

emerged in the field of landscape ecology attempting to characterize predictable patterns of scale 

to which species respond to their environment (Holland et al. 2004, Holland et al. 2005, Nams et 

al. 2006, Fisher et al. 2011, Holland and Yang 2016). Holland et al. (2004) posited that there is a 

characteristic scale at which a species interacts with its environment, while Wiens (1989) posited 

that there may be domains of scale (a spatial range) where ecological patterns and processes are 

consistent. Early work on beetles (Holland et al. 2004, Holland et al. 2005) and mammals (Nams 
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et al. 2006, Fisher et al. 2011) suggested support for these characteristic scales, but the emerging 

body of research suggests that best-supported scales are not predictable, but rather context-

specific (Stuber and Fontaine 2019). Investigating scale-dependence is important to understand 

an identify how mammal-habitat relationships change across spatial scales to best inform 

conservation practices.  

One biogeoclimatic region where the problem of scale need be considered is the western 

Cordillera of North America, where the western boreal forest is changing rapidly due to resource 

extraction creating landscapes without global or historical analogs (Pickell et al. 2014, Pickell et 

al. 2015, Pickell et al. 2016b). Mammal species respond to oil sands -generated landscape 

features, and the cumulative effects of ancillary disturbances, in various ways (Fisher and Burton 

2018, 2021, Wittische et al. 2021b, Fisher and Ladle 2022a, Roberts et al. 2022, Fuller et al. 

2023). Linear features, such as seismic lines and roads, facilitate wolf (Canis lupus) travel 

(Dickie et al. 2017) which then increases encounter and predation rates, affecting caribou 

(Rangifer tarandus) and moose (McKenzie et al. 2012, Boucher et al. 2022). Concurrently, 

polygonal anthropogenic features, such as cutblocks and well sites, provide early-seral forage 

subsidy (Fisher and Burton 2018, Routh and Nielsen 2021, McKay and Finnegan 2022) for 

herbivores, which then attracts carnivores, also altering predator-prey dynamics (Fisher and 

Ladle 2022a). Forestry cutblocks attract large herbivores (Fisher and Wilkinson 2005), and the 

role of well sites has recently been revealed as additional sources of early-seral forage for many 

species, and an aggregator of prey for carnivores (Fisher et al. 2021b, Fuller et al. 2023). Clearly, 

different disturbance features evoke variable responses from large mammals, but it is unknown 

whether species interact with these features at some “characteristic” scale (Holland et al. 2004) 

or if these scales are predictable.  
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Here, we examined habitat relationships at multiple spatial scales for several boreal 

mammal species. We used a multi-scale information-theoretic approach to understand the effect 

of spatial scale on species responses to landscape features an area of heavy habitat disturbance, 

the Athabasca oil sands. We used camera traps to quantify species’ relative abundance 

(O'Connell et al. 2011, Fisher 2025), and then modelled each species against natural and 

anthropogenic landscape variables across multiple spatial scales.  We hypothesized (1) domains 

of scale would emerge for each species, such that habitat measured at spatial scales of similar 

sizes would perform comparably to explain a species’ relative abundance; (2) the best-supported 

spatial scale would vary between the type of processes being measured (e.g., anthropogenic and 

natural landscape features); (3) best-supported spatial scales would vary among species and not 

be predictable (e.g., by body size or trophic level). 

 

MATERIALS AND METHODS 

Study area 

Our study frame is the Western Sedimentary Basin (Porter et al. 1982), a vast portion of 

the western Canadian boreal forest underlain by the world’s 3rd-largest petroleum deposits 

(Figure 2) (Government of Alberta, 2023) including the Athabasca Oil Sands Regions (OSR), 

which aggregate three independently managed oil sands areas (ABMI, 2014). Covering a total 

area of 140,000 km², the OSR is characterized by a mosaic of upland and lowland forests, 

wetlands, and anthropogenic features resulting from natural resource extraction, particularly 

energy development and agriculture, which together comprise 15.5% of the total area (ABMI, 

2014). This diverse landscape supports a high diversity of mammals, including grey wolf (Canis 

lupus; hereafter wolf), caribou, moose, black bear (Ursus americanus), white-tailed deer 
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(Odocoileus virginianus), Canada lynx (Lynx canadensis), coyote (Canis latrans), red fox 

(Vulpes vulpes), fisher (Pekania pennanti), and marten (Martes americana).  

Sampling design 

Our work was part of the joint Canada-Alberta Oil Sands Monitoring program (Roberts et 

al. 2022), and our design follows the terrestrial Biological Monitoring Program’s BADR design 

We stratified this region according to the degree of anthropogenic development (high, medium, 

and low development) (Smith 2018, Bayne et al. 2021a) and selected six landscape units (LUs) 

defined by hydrologic boundaries and each covering 1000-2000 km² (Figure 2). To quantify 

large mammal relative abundance in each LU, we employed a constrained stratified sampling 

design wherein LUs were stratified into upland (>50% upland deciduous forest) and lowland 

(>50% wet coniferous forest) categories. Within each LU, we divided the area into 2 km² 

hexagonal grid cells using ArcGIS (Version 10.3; ESRI 2014), ensuring that the cells were 

located within 100 m of accessible roads or trails, as identified in the Alberta Biodiversity 

Monitoring Institute’s ‘Wall-to-Wall Human Footprint Inventory, Enhanced for Oil Sands 

Monitoring Region’ (hereafter ABMI HFI) (Alberta Biodiversity Monitoring 2021).  

From this candidate set of 60 cells per LU, we randomly selected 40-50 cells for each 

LU, adjusting the selection criteria to ≥25% for either upland or lowland strata if 30 cells were 

not identifiable. One remote infrared wildlife camera (Reconyx PC900 Hyperfire™, Holmen, 

WI, USA) was deployed within each selected cell, positioned at least 100 m from active human-

use roads and trails and at least 1 km from other camera locations in adjacent cells. Cameras 

were strategically placed along active wildlife trails to enhance the probability of detecting 

species (MacKenzie et al. 2003, MacKenzie and Royle 2005, MacKenzie et al. 2017b). 

Additionally, a scent lure (O’Gorman’s™ Long Distance Call, O’Gorman’s MT) was applied to 
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a bait tree at each camera location to further increase the likelihood of mammal detection and 

reduce the frequency of false absences (Stewart et al. 2019b). Images were identified to species 

by trained reviewers using Timelapse Image Analyzer 2.0 (Greenberg et al. 2019a). 

In this design, we deployed remote cameras across these six LUs from 2021 to 2023 

(Figure 2). Each LU was monitored for approximately 12 months, with two LUs observed from 

2021 to 2022 and four LUs from 2022 to 2023; however, some monitoring periods were limited 

due to logistical constraints. 

Quantifying natural and anthropogenic landscape features around cameras 

We quantified anthropogenic disturbance features from the ABMI HFI dataset (Alberta 

Biodiversity Monitoring 2021)grouping together ecologically similar features (Table S1). We 

quantified natural landscape features using landcover data from the ABMI Wall-to-wall Land 

Cover Map 2010 Version 1.0 (Alberta Biodiversity Monitoring 2010). We employed our multi-

scale analysis by extracting landscape data at 20 buffer widths ranging from 250-meter radius to 

5000-m radius, in 250-meter increments surrounding the camera locations. 

To assess multicollinearity among covariates, we conducted pairwise Pearson’s 

correlation tests within each spatial scale. Variables with a correlation coefficient (r) exceeding 

0.6 were either excluded from a model or merged into a single variable if ecologically justified 

(Zuur et al. 2010b). The final selection of HFI and land cover variables used for subsequent 

analyses is summarized in Table 1. 
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Figure 1.  Schematic of a camera site within a Landscape Unit, and the features surrounding it. 
Within a 250-m radius of a camera the site is predominantly conifer forest (green), with some 
cutblock. Different features are captured as the spatial scale increases. So too does the ecological 
“neighborhood” of the moose, as its occurrence at a site can depend on the presence of 
conspecifics, competitors, and predators, which are cueing into landscape features aggregated at 
different scales. 
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Figure 2: Map of study area in the Oil Sands Region (OSR) of Alberta, Canada with landscape 
units (LUs; in green) and camera deployment sites within each LU (black points).  
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Model framework 

We define an “optimal spatial scale” as one at which quantified habitat explains species’ 

occurrence better than other scales (Holland et al. 2004, Fisher et al. 2011), as measured by AIC 

weight and model validation (Burnham and Anderson 2002a). To evaluate how the optimal 

spatial scale varies with species and different types of landscape processes (e.g., anthropogenic 

versus natural), we performed three distinct analyses. First, we assessed the best-fitting spatial 

scale for each species using only anthropogenic (HFI) covariates; in the second, we used only 

natural (landcover) covariates; and in the third, we employed a mixed approach incorporating 

both landscape types (i.e., global models). For all analyses, we constructed generalized linear 

mixed models (GLMMs) for the global models according to Equation 1, which was modified for 

the anthropogenic and natural landcover models (see below) 

Equation 1: 

𝜂!" = 𝛽# + 𝐵$𝐻𝑎𝑟𝑣𝑒𝑠𝑡!" + 𝛽%𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙!" + 𝛽&𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠/𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑒𝑠!"

+ 𝛽'𝑆𝑒𝑖𝑠𝑚𝑖𝑐𝐿𝑖𝑛𝑒𝑠!" + 𝛽(3𝐷𝑆𝑒𝑖𝑠𝑚𝑖𝑐!" + 𝛽)𝑇𝑟𝑎𝑖𝑙𝑠!" +	𝛽*𝑊𝑒𝑙𝑙𝑠!"

+	𝛽+𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑!" + 𝛽,𝐹𝑜𝑟𝑒𝑠𝑡!" + 𝛽$#𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑!" +	𝛽$$𝑆ℎ𝑟𝑢𝑏!" + 𝐿𝑈" 

logitJ𝜃!"L = 	𝜂!" 		 

𝑀𝑜𝑛𝑡ℎ𝑙𝑦	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒!"~	Bernoulli(𝜃!") 

𝐿𝑈"~	Gaussian(0, 𝜎%) 

Monthly species occurrence is represented as the ith observation at LU j, where LU is a random 

intercept with jth level j= individual landscape unit. Monthly species occurrence was assumed to 

follow a Bernoulli distribution, whereby each month was considered an independent trial where a 

species was detected (1) or not detected (0) within a calendar month. Mammal occurrence was 

modeled as a proportional binomial response variable, and calculated as the proportion of months 
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a species was present for all months that had 15 (approximately 0.5 month) or more fully 

operational camera days, with the months of December through March excluded from black bear 

occurrence calculations to account for their hibernation period. Note we treated 0’s a true and not 

as in occupancy models (MacKenzie et al. 2002), which partition 0 in an e.g. 0101 detection 

history as error. Mammals temporarily emigrate from sites and the time spent in patch is a part of 

the biological process we are measuring. A non-detection of a species on a wildlife trail, with 

lure, in an entire month, is confidently treated as a true absence.  

To enhance computational efficiency and facilitate comparisons of effect sizes, 

continuous variables were standardized (mean = 0, standard deviation = 1) for each spatial scale 

independently. For the anthropogenic analysis equation 1 was reduced to include harvest, 

industrial, pipelines/transmission lines, seismic lines, 3D seismic lines, trails, and wells as fixed 

effects while the natural landcover analysis included forest, grassland, and developed landcover 

types.  

Models were constructed using the glmmTMB package in R version 4.2.1 (Brooks et al. 

2017). To determine the most appropriate model (i.e., spatial scale) for each species, we used 

Akaike Information Criterion corrected for small sample size (AICc) and selected the lowest 

AICc as the most supported model (i.e., spatial scale) from each of the three analyses (Akaike 

1998, Burnham and Anderson 2002a), using the MuMIn package (Bartoń 2020). 

RESULTS 

Camera operability and mammal detections 

The study generated a total 208,655 non-blank images across all six LUs and 82,027 

camera trap nights. Of those 178,730 images were of 22 different mammal species identifiable to 

the species level; the most common species detected on cameras was white-tailed deer (hereafter 
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deer) with 67,643 images and the least common was the North American porcupine (Erethizon 

dorsatum) with 7 images. Other species detected in decreasing order of images included, black 

bear (46,306), moose (28,692), coyote (10,355), snowshoe hare (Lepus americanus; 10,218), 

wolf (4,482), North American red squirrel (Tamiasciurus hudsonicus; 3,798), lynx (2,344), 

caribou (1,452), fisher (1,188), red fox (782), marten (637), cougar (Puma concolor; 442), 

wolverine (Gulo gulo; 137), striped skunk (Mephitis mephitis; 66), river otter (Lontra 

canadensis; 38), long-tailed weasel (Mustela frenata; 38), elk (36), short-tailed weasel (Mustela 

erminea; 25), mule deer (Odocoileus hemionus; 9), and North American beaver (Castor 

canadensis; 9). 

Evidence for domains of scale 

 Spatial scale domains emerged for some species but not all and differed between natural 

and anthropogenic landcover (Figure 3-5).  For example, when considering both landcover types 

(i.e., global models) coyote, fisher, wolf, red fox, and white-tailed deer - to a lesser degree - all 

showed evidence of a domain, whereby spatial scales within ± 250m - 500m of the best-fit 

spatial scale had similar AICc scores and model weights to the best-fit buffer (Figure 3). 

However, when considering solely anthropogenic disturbance features, fisher, wolf, moose, and 

coyote - to a lesser degree - showed evidence of a domains (Figure 4); while moose, red fox, 

white-tailed deer with wolf and lynx - to a lesser degree - showed evidence of a characteristic 

scale when modeled with natural landcover features (Figure 5).  Several species showed 

evidence of domains of scale with all three analyses; AICc scores for the best-fit models for 

coyote, fisher, and wolf were all <1 AICc from subsequent models of similar spatial scales 

(Table 2).  

Optimal spatial scales for natural and anthropogenic landcover 
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Optimal spatial scales for each species – that which was best supported by weight of 

information-theoretic evidence – were also dependent on the types of landcover heterogeneity 

(Table 2). All three analyses – anthropogenic, natural, and combined landcover – were not in 

agreement on the optimal spatial scale for any species, although the optimal buffer for the global 

analysis aligned closely (e.g., optimal buffers were the same or within 250m) with either the 

anthropogenic or landscape analysis for all species except fishers (where the optimal global 

model was at a spatial scale between the optimal models for the other two analyses; Figure 6)). 

Additionally, the relative size of best-supported spatial scales varied across analyses, with no 

consistent pattern in spatial scale differences between anthropogenic, global, and landcover 

models. For example, fishers, wolf, lynx, red fox, and white-tailed deer all had smaller optimal 

spatial scales for anthropogenic models relative to the landcover models while black bear, 

caribou, coyote, and moose all had smaller optimal spatial scales for anthropogenic models 

relative to the landcover models (Figure 6).  

Species-specific spatial scales 

Within an analysis, the optimal spatial scale varied across species and encapsulated a 

large range of sizes with a minimum size of 250 meters for black bears (global and landcover 

models), lynx (global and anthropogenic), moose (global and landcover) and caribou (landcover) 

to 5,000m for coyote (global) (Figure 6). There were no discernable trends in best-supported 

spatial scales across species relating to either body size or trophic level. For example, our four 

largest species (black bear, white-tailed deer, caribou, and moose) had optimal spatial scales 

ranging from 250m – 4500m across the three analyses and our four smallest species (fisher, red 

fox, lynx, and coyote) had optimal spatial scales ranging from 250m – 5000m (Table 2). 
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DISCUSSION 

 Habitat loss is a major driver of global biodiversity loss, but the impacts of loss echo well 

beyond the patch or stand removed. In this multi-landscape analysis across the western boreal 

forest oil sands, the density of landscape change as far 4500-m away from a camera trap affected 

mammal species’ relative abundance there. This is expected under theory; landscape 

supplementation, complementation, and other landscape processes appear as altered (e.g.  

harvested, removed, or fragmented) patches but manifest as population processes (Addicott et al. 

1987, Pulliam and Danielson 1991, Dunning et al. 1992). Here, we show that landscape change 

amplifies well beyond the local patch, or the amount of habitat altered, to affect species’ spatial 

distribution and relative abundance, and this is true of the entire mammal community we 

analyzed. 

 The spatial scale at which natural and anthropogenic heterogeneity best explained 

species’ relative abundance varied among species, and not predictably. The optimal spatial scale 

was not related to body mass, as observed in the single-landscape study by Fisher et al. (2011) 

based on Hollings’ spatial discontinuity hypothesis (Holling 1992). Nor was the optimal spatial 

scale related to trophic level, as expected since predators generally have larger home-range sizes 

than prey (Lindstedt et al. 1986, Kelt and Van Vuren 2001).  

Moreover, the optimal scale differed among natural and anthropogenic features for all 

species except white-tailed deer. There was no directionality to these differences. We predicted 

that anthropogenic features, being a novel intrusion, would have spatially farther-reaching 

influence on species’ space-use than do natural features. This was the case only for four of the 

nine species we analyzed (black bear, caribou, coyote, and moose), so does not hold generally. 
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Domains of scale – a series of spatial scales similar in size at which species-habitat 

relationships hold constant (Wiens 1989, Wiens and Milne 1989) – were not apparent across the 

community, observed only for a few species, and these domains varied among natural and 

anthropogenic models. In global (combined natural and anthropogenic models), evidence for 

scale domains was observed for five of nine species: coyote, fisher, wolf, red fox, and white-

tailed deer. Anthropogenic disturbance models showed scale domains for only four species, and 

natural heterogeneity models showed scale domains for a different four species. We had hoped 

that this empirical analysis would follow theory and reveal some general laws (Lawton 1999, 

Allen and Hoekstra 2015) wherein optimal spatial scales are indeed “characteristic” sensu 

(Holland et al. 2004, Fisher et al. 2011), but this is not supported. 

Nonetheless, optimal scales do plainly merge from multi-scale species-habitat models, as 

shown for multiple other taxa including beetles (Holland et al. 2005) and birds (Mahon et al. 

2016, Stuber and Fontaine 2019, Mazziotta et al. 2024). The ramification for modelling is that is 

insufficient to choose a single spatial scale and then assume that habitat quantified at this scale 

provides the best explanation for habitat selection and spatial distribution. We echo former 

researchers in advocating for a multi-scale approach whenever possible. 

The ramification for ecological conservation is that for many mammal species, the effects 

of anthropogenic landscape change on point estimates of relative abundance is manifested at 

spatial scales encompassing the “ecological neighborhood” (Addicott et al. 1987) around a 

camera site. Thu, the impact is more than habitat loss per se – whether it be cutting of mature 

forest for timber, replacement of natural habitat with early-seral vegetation as in well sites or 

building a road – but instead a change in the relative value of the surrounding landscape. This net 

value can be positive or negative, providing subsidies or risks, creating winners and losers 
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(Fisher and Burton 2018, Mahon et al. 2019). Mitigating the effects of development through 

restoration will therefore require large-scale planning that recovers multiple forms of 

disturbance, not simply seismic lines as is currently practiced (Tattersall et al. 2020b, Beirne et 

al. 2021a, Dickie et al. 2022).  
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Table 1: Names and descriptions of 11 Human Footprint Inventory (HFI) and land cover (LC) covariates used in generalized linear mixed 
effects models (GLMMs) of nine boreal mammal species in the Oil Sands region of Alberta, Canada. Descriptions for covariates were 
derived from the metadata documentation for Alberta Biodiversity Monitoring Institute’s ‘Wall-to-Wall Human Footprint Inventory, 
Enhanced for Oil Sands Monitoring Region’ (HFI) and Alberta Biodiversity Monitoring Institute’s ‘Wall-to-Wall Land Cover Map 2010 
Version 1.0’ 
 
Variable 
name 

Variable 
type 

Units Unit description Variable Description 

Harvest HFI Proportion The proportion of harvested 
areas within the buffer area. 

Harvest is defined as, areas where forestry operations have 
occurred (clear-cut, selective harvest, salvage logging, etc.) 

OSM 
industrial 

HFI Proportion The proportion of various 
industrial features (i.e. 
borrowpits, clearings, 
facilities, and mines) within 
the buffer area. 

Borrowpits, clearings, facilities, and mines are all defined in 
detail in Table S1 of the supporting information. 

Pipelines and 
transmission 
lines 

HFI Proportion The proportion of both 
pipelines and transmission 
lines within the buffer area. 

Pipelines and transmission lines are defined in detail in Table S1 
of the supporting information. 
 

Seismic lines HFI Proportion The proportion of seismic 
lines within the buffer area. 

Seismic lines are defined as cleared corridors created during 
hydrocarbon exploration. They are a polygon feature class 
derived from a 3-meter buffer (6-meter total width) of a pre-low-
impact-seismic centerline. 

Seismic lines 
3D 

HFI Proportion The proportion of 3D seismic 
lines within the buffer area. 

3D seismic lines are defined as cleared corridors created during 
hydrocarbon exploration. They are a polygon feature class 
derived from a 1.5-meter buffer (3-meter total width) of a pre-
low-impact-seismic centerline. 

Trails HFI Proportion The proportion of trails 
within the buffer area 

Trails are defined as cleared corridors surfaced with dirt or low 
vegetation for human/vehicle access.  

Wells HFI Proportion The proportion of wellsites 
within the buffer area 

Wellsites are defined as, ground cleared for an oil/gas well pad 
where at least one well is currently active 

Lc_develope
d 

LC Proportion The proportion of developed 
land within the buffer area 

Developed land is defined as urban and built-up areas (including 
industrial sites), impervious artificial surfaces (e.g. airport 
runaways), railways and roads. 
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Table 2: Data for the most supported models (e.g. spatial scale) at predicting mammal presence/absence from three analyses (global, 
anthropogenic features, and landscape features) for nine mammal species in the oil sands region, Alberta, Canada. The most supported 
model (lowest AIC) from each analysis is listed along with the weight for that model and the delta Akaike Information Criterion 
(DAIC) for the next best performing model. Models in bold were >2 AIC lower than the next model.  
 

 
*The delta AIC is presented for the next best model rather than the most supported model itself as the weight for all most supported models is zero, the delta AIC 
for the next best model is included to be transparent about the certainty of any one model.

Lc_forest LC Proportion The proportion of coniferous, 
broadleaf, and mixed forests 

Treed areas with at least a 10% crown closure of trees of any 
kind. 

Lc_grassland LC Proportion The proportion of grassland 
within the buffer area 

Grasslands are defined as predominantly native grasses and other 
herbaceous vegetation with a minimum of 20% ground cover. 

Lc_shrub LC Proportion The proportion of shrubland 
within the buffer area 

Shrubland is defined as at least 20% ground cover which is at 
least one-third shrub, with no or little presence of trees (<10% 
crown closure) 

Species Top global 
model 

Weight DAIC* Top anthropogenic 
model 

Weight DAIC* Top landcover 
model 

Weight DAIC* 

Black bear 250m 0.678 5.15 4000m 0.174 0.17 250m 0.915 9.19 
Caribou 1000m 0.796 4.63 1000m 0.884 5.16 250m 0.222 1.23 
Coyote 5000m 0.444 0.41 4750m 0.268 0.26 3750m 0.192 0.12 
Fisher 1000m 0.266 0.84 250m 0.395 0.38 2500m 0.205 0.28 
Grey wolf 3500m 0.303 0.45 2000m 0.245 0.09 3500m 0.243 0.26 
Lynx 250m 0.982 8.36 250m 0.996 12.94 500m 0.207 1.40 
Moose 250m 0.941 7.02 750m 0.526 0.90 250m 0.988 11.28 
Red fox 4750m 0.367 0.03 1750m 0.733 3.08 4750m 0.325 0.26 
White-tailed 
deer 

1500m 0.234 0.16 1500m 0.732 2.64 4500m 0.611 2.73 
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I 
Figure 3: Model weights plotted for each model at predicting mammal presence/absence for nine 
mammal species in the oil sands region, Alberta, Canada. Results are from model selection for 
global models (i.e., models that included both anthropogenic and landscape variables). All models 
included the same variables extracted at different buffer widths from the camera.  
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Figure 4: Model weights plotted for each model at predicting mammal presence/absence for nine 
mammal species in the oil sands region, Alberta, Canada. Results are from model selection for 
anthropogenic models (i.e., models that included only anthropogenic variables). All models 
included the same variables extracted at different buffer widths from the camera. 
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Figure 5: Model weights plotted for each model at predicting mammal presence/absence for nine 
mammal species in the oil sands region, Alberta, Canada. Results are from model selection for 
landscape models (i.e., models that included only landscape variables). All models included the 
same variables extracted at different buffer widths from the camera. 
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Figure 6: The best-supported spatial scales at which landscape features predicted mammal 
presence/absence, from three analyses plotted for each of nine mammal species in the oil sands 
region, Alberta, Canada. The anthropogenic analysis (blue) includes only Human Footprint 
Inventory (HFI) covariates, while the landscape analysis (yellow) includes only land cover types, 
and the global (pink) includes both types of variables. All models within an analysis included the 
same variables, the only difference was the buffer width used to calculate the proportions of each 
variable around a camera.  
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5. WHAT’S UP WITH BLACK BEARS? SEASON AND 

DEMOGRAPHIC DRIVE OCCURRENCE ON OIL SANDS 

DISTURBANCE FEATURES  

 

Megan Braun, Andrew F. Barnas, Jason T. Fisher 

 

OSM SUMMARY 

 Black bears are one the indicators signalled by Indigenous community members as being 

culturally important. The effects of OS development on black bears have been very ambiguous, 

with a few studies showing contextual and contrasting responses (Tigner et al. 2014, Fisher and 

Burton 2018, Fisher and Ladle 2022b). We hypothesized that because previous studies have 

lumped together different age-classes and seasons, that approach may be obscuring responses to 

OS features if these differ among those members of the population and through time. We split up 

our data into seasons and identified bears with and without cubs, and our hypotheses were 

confirmed: bears react to OS features differently in different seasons and depending on whether 

they have a cub or not. Thus, we show that OS features do indeed have demonstrable and strong 

effects on this important mammal species, as do other features, and that perceived risk of humans 

is a likely mechanism for some of these responses. This knowledge will help guide an 

understanding of how OS features affect bears, to inform any mitigation actions and future 

landscape planning. 

 

Abstract 

 Habitat selection by wildlife can depend on trade-offs between the spatiotemporal 

distribution of perceived risks and rewards, both of which anthropogenic disturbance may alter. 

In the western Nearctic boreal forest, landscape changes associated with petroleum extraction 
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have altered habitat availability for multiple mammals in clear patterns. However, one species - 

black bear – presents unique challenges. Black bear habitat selection in relation to disturbance 

lacks consensus, with contrasting results indicating that response to disturbance remain largely 

unknown. However, previous research has not considered potential seasonal and demographic 

influences on behaviour. Here, we hypothesized that feature use by black bears depends on a 

trade-off between associated benefits and risks, which vary seasonally, and that different bear 

demographics (i.e., solitary adults versus females with young) weigh these benefits and risks 

differently, manifesting as differential habitat selection. Using data from 233 camera-traps 

deployed across six landscapes across a gradient of disturbance, we constructed a candidate set 

of generalized linear mixed models with predictors hypothesized to influence bear occurrence. In 

support of our hypothesis, we found that bear occurrence in relation to disturbance features 

varied seasonally and between demographic groups. Most notably, solitary adult occurrence was 

negatively affected by roads in spring and fall but not summer, indicating a potential risk 

response to hunting activity in the former seasons. Solitary adult occurrence was also positively 

influenced by moose in spring (likely from calf predation), and negatively by linear features used 

by off-highway vehicles in summer and fall. Female with young occurrence was negatively 

influenced by roads in all seasons, and by linear features in spring and fall. This study was 

conducted as part of the Oil Sands Monitoring Program, and results will directly inform 

conservation initiatives. Broadly, the work provides key insights into how changing risk-reward 

trade-offs drives variation in habitat selection by wildlife over time and between demographics.  
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Introduction 

Habitat selection by wildlife can depend on a trade-off between the spatial distribution of 

perceived risks and rewards across a landscape. In this trade-off, if high reward food-rich 

habitats also have high risk (e.g. abundant predators), then lower reward food-poor habitats with 

less risk may be preferred (Holbrook and Schmitt 1988b). Further, risk-reward trade-offs are not 

static, but rather dynamic and fluctuate over an animal’s lifespan. Trade-offs in habitats may 

vary temporally when risks and rewards themselves vary temporally: for example, predation risk 

changing along with the diurnal pattern of predator activity (Lima and Dill 1990), or forage 

availability fluctuating by season. The willingness of an animal to take risks can also shift though 

time based on life history stage. For example, under parental investment theory (Trivers, 1972), 

animals with offspring may prioritize avoiding risks to increase chances of offspring survival 

(Ben-David et al. 2004).  

Dynamic assessment of trade-offs by animals is further complicated by anthropogenic 

disturbance, which can alter the spatiotemporal distributions of risks and rewards on the 

landscape. Anthropogenic disturbances present a number of new perceived risks, such as roads 

with noisy vehicles and collision risk (Poulin et al. 2023), but also benefits such as food 

availability from waste disposal near settlements. For prey species, human disturbance can also 

confer an interesting benefit known as the “human shield” effect, where prey may occur close to 

disturbances/human activity to buffer against predators if they avoid these risky areas (Berger 

2007).  

Within the Nearctic western boreal forest lies Alberta’s Oil Sands Region (OSR), where 

largescale anthropogenic landscape change associated with petroleum extraction, timber harvest, 

and transportation has influenced mammal habitat selection (Pickell et al. 2013, Roberts et al. 
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2022). These landscape disturbances are typically categorized as polygonal features (e.g., oil 

well sites) and linear features (e.g., seismic lines), which act differently on different mammal 

species (Roberts et al. 2022). Depending on species-specific resource requirements, features 

result in “winner” species that generally benefit from the disturbances, and “losers” which are 

negatively impacted (Fisher and Burton 2018). Numerous studies have investigated the responses 

of individual species, and the mammal community as a whole, to disturbance features, ultimately 

to direct industrial activities and restoration efforts (Fisher and Burton 2018, Beirne et al. 2021b, 

Wittische et al. 2021a). Although clear and consistent patterns have emerged for some species, 

such as the use of linear features by canids (Wittische et al. 2021a), there is still uncertainty 

regarding the responses of some community members, especially the large, omnivorous black 

bear (Ursus americanus).  

Black bear habitat selection in relation to linear and polygonal disturbances in the OSR is 

largely inconsistent, with research indicating either a positive (Mosnier et al. 2008, Bayne 2011, 

Latham et al. 2011a, Tigner et al. 2014, Demars and Boutin 2018, Dickie et al. 2020b), negative 

(Fisher and Burton 2018, Fisher and Ladle 2022c, Cuveira-Santos 2024), or negligible attraction 

to disturbance features (Beirne et al. 2021b). Ultimately, this lack of consensus signifies that 

overall, black bear preference and use of these features is unknown, making it impossible to 

draw informative conclusions for management actions. However, it is possible that these 

analyses were performed at scales inadequate to discern extant relationships. Studies on black 

bear habitat selection in the OSR have largely considered feature response over the entire active 

season (i.e., the period where bears are not undergoing hibernation) and without demographic 

discernment (with the exception of select telemetry work, ex. Latham et al. (2011a)). However, 

black bear behaviour is both highly seasonal (Pelchat and Ruff 1986) and varies by demographic 
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group (Gantchoff et al. 2019). Consequently, important patterns of feature response could have 

been previously overlooked due to a lack of consideration of bear biology, warranting a finer 

scale investigation into potential mechanisms (i.e., risks and rewards) that dictate both feature 

attraction and avoidance.  

Several factors could mediate black bear attraction to linear and polygonal features. First, 

forage subsidies are provided throughout the active season in both feature types. Black bears are 

opportunistic omnivores, consuming primarily vegetation and tending to select available food 

with the highest nutrient content (Pelchat and Ruff 1986). Past research into the plant component 

of their diet by Pelchat and Ruff (1986) in the Alberta boreal forest suggests that this can be 

divided temporally into several stages. Upon emergence from hibernation, bears start by 

consuming green vegetation, shifting to early ripening berries by mid-July and then to late-

ripening berries by mid-August until hibernation onset. Other diet analyses conducted throughout 

the boreal forest are consistent with these general stages (Raine and Kansas 1990, Mosnier et al. 

2008, Romain et al. 2013, Lesmerises et al. 2015). Most plants in their diet are abundant in early-

seral vegetation communities such as on linear and polygonal features (Fisher and Wilkinson 

2005, Dabros et al. 2018), and the spring green-up may occur earlier relative to forested 

landcover due to higher solar irradiation (Mosnier et al. 2008). Berry species also appear to 

thrive in disturbance features: Velvet leaf blueberry (Vaccinium myrtilloides) was found to have 

significantly greater vigour and fruit production on seismic lines relative to adjacent forest 

(Dawe et al. 2017) and significantly higher berry production in open canopies (Nielsen et al. 

2020).  

Second, linear features provide movement subsidies. Seismic lines facilitate travel 

between vegetation patches and can enhance the search for animal prey (Bastille-Rousseau et al. 
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2011, Dickie et al. 2020b, Tattersall et al. 2023b). In the western Nearctic boreal forest, 

mammalian prey species of black bears include snowshoe hare and neonates of ungulates like 

white-tailed deer, caribou, and moose (Latham et al. 2011a, Lesmerises et al. 2015). These 

movement benefits may be particularly important in the spring when there are newborn fawns 

and calves, and when vegetation is both scarcer and nutrient-poor, thus requiring more frequent 

movements between patches (Young and Ruff 1982).  

Although disturbance features provide forage and movement subsidies throughout the 

active season, feature use may depend on weighting these benefits with associated risks. One risk 

that could result in feature avoidance is the presence of human hunters on and near features. In 

Alberta, there are both spring and fall hunting seasons for black bears, and hunting is the primary 

source of mortality (Alberta Government 2016). During these periods, hunting risk may cause 

black bears to avoid linear features, which are used as access routes for hunters (Dabros et al. 

2018), as well as polygonal features, where bears could easily be spotted. Stillfried et al. (2015) 

support this conjecture, wherein black bears increased avoidance of non-paved roads (which 

were used as hunter access routes) during the hunting season relative to the non-hunting season. 

Ordiz et al. (2012) also found evidence that bears are aware of hunting risk, altering their 

behaviour and movement patterns during hunting seasons.  

Risk of feature use may, however, vary by demographic group. For females with 

dependent young, another risk that drives habitat selection is the presence of solitary male and 

female black bears. Infanticide can be a major source of cub mortality in bear populations, and 

females with young have been shown spatially segregate themselves from other bears even if this 

means selecting habitats with poorer food resources (Ben-David et al. 2004, Czetwertynski 2008, 

Gantchoff et al. 2019). If solitary adult bears are using the disturbance features for the forage and 
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movement subsidies, it is therefore possible that females with cubs will avoid them despite these 

benefits. However, this pattern may reverse temporally if solitary adult bears avoid the features 

during the spring and fall hunts. Females with cubs are protected from harvesting (Alberta 

Government 2016) and there is evidence that they could be aware of this protection. Ordiz et al. 

(2012) found that movement patterns of females with cubs were barely altered by the hunting 

season relative to solitary adult bears. Additionally, Stillfried et al. (2015) found that female 

black bears selected habitat much closer to the unpaved roads during the hunting season than 

males. They suggested this could be due to cub presence, and that females may be using hunter 

proximity as a human shield against other bears (Stillfried et al. 2015). It is possible that a 

similar phenomenon occurs with OSR disturbance features.  

The objective of this study is to weigh evidence for competing hypotheses about black 

bear habitat selection in relation to OSR disturbance features.  It is also to determine the 

importance of disturbance features in driving habitat selection relative to other predictors, such 

as prey abundance and natural landcover. We hypothesize that (1) bear use of features varies 

seasonally as risks and subsidies are differentially present, and (2) feature use varies for bears 

with dependent young, versus solitary adult bears, due to susceptibility to different risks (hunting 

for the former, infanticide for the latter). We predict that solitary adult bears will avoid linear and 

polygonal disturbance features during the spring and fall hunting seasons but will use features in 

the summer to benefit from forage and movement subsidies. Conversely, we predict that females 

with young will be attracted to linear and polygonal features during the hunting seasons to 

benefit from subsidies and the “shield” against infanticide risk but will avoid them in the summer 

due to the presence of solitary adult bears. 
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Methods  

Study area  

This study was situated in the boreal ecozone of northeastern Alberta, Canada. The 

landscape here is characterized by a mixture of upland forests composed of jack pine, white 

spruce, aspen, and lodgepole pine, and lowland muskegs dominated by larch and black spruce 

(Pickell et al. 2013). Forests present as a patchwork of different stand ages due to the occurrence 

of frequent natural disturbances including insects and wildfire (Pickell et al. 2013). Underlying 

this landscape is one of the worlds’ largest hydrocarbon deposits, which initially spurred the 

establishment of the OSR (Alberta Government 2023). The OSR is composed of three 

administrative regions that together account for 21% of the province’s land area (Bayne et al., 

2021) Throughout the OSR, there is significant industrial development that has resulted in 

widespread landscape change (Pickell et al. 2016a). With respect to bitumen extraction, surface 

mining is restricted to a relatively small portion of the Athabasca region, while in situ mining is 

prevalent throughout the rest of the area, resulting in dense networks of disturbance features 

including roads, seismic lines, pipelines, and well pads (Bayne et al., 2021).  

Camera trap arrays  

To investigate black bear habitat selection, detection data was acquired from camera traps 

placed within six different study landscapes (“landscape units”) throughout the OSR (Fig. 1.). 

Defined by watershed boundaries, each landscape unit was approximately 1000 km2, and varied 

in their respective level of anthropogenic disturbance to span a gradient of low to high intensity 

(Bayne 2021). To select camera deployment locations (i.e., camera “sites”), landscapes were first 

stratified by dominant forest class (>50%; conifer, deciduous, and mixed wood) to account for 

natural variability in sampling locations. Then, each landscape unit was overlain by a grid of 2-
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km2 hexagonal cells in ArcGIS Desktop (ESRI 2014) with the cell size chosen to enable 

sufficient spacing between cameras for independence in species-habitat models (Zuckerberg et 

al. 2020b). 30 cells were randomly selected from each stratum. For ease of site access, cells were 

constrained to within 100 meters of accessible roads (when possible), except for LU21 where all 

sites were reached via helicopter.  

Among the selected cells in each landscape, 40 – 50 Reconyx PC900 Hyperfire infrared 

remote digital cameras (Holmen, WI) were deployed, with one camera per cell. Detection 

probability for wildlife was enhanced by placing cameras along an active game trail (Fisher and 

Burton 2018) and by administering scent lure (O’Gorman’s™ Long Distance Call) on a tree 4-7 

meters in front of each camera. Cameras were also placed approximately 1 meter from the 

ground, and a minimum of 100 meters from active roads and 1 kilometer from other cameras. 

Additionally, cameras were set to high sensitivity, and once triggered, were programmed to take 

a single photograph with no delay between consecutive triggers. A ‘timelapse’ photo was 

programmed to be taken at the same time daily to ensure functionality.  

In two arrays, cameras were deployed in July 2021 and retrieved in either February or 

September 2022 due to logistical constraints. In the other four arrays, cameras were deployed in 

September/October 2022 and retrieved in September/October 2023. Once collected, images (Fig. 

2.) were manually classified by trained reviewers using Timelapse Image Analyzer 2.0 

(Greenberg et al. 2019b) to determine species identities and characteristics and demographic 

information. All further analyses on these data were performed in R V4.4.1 (R Core Team 

2024a).  
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Figure 1. The six landscapes surveyed in northeastern Alberta and individual camera sites (left). The inset map indicates the extent of 
the OSR in Alberta. LU13) n = 41, LU21) n = 36, LU15) n = 39, LU3) n = 36, LU2) n = 42, LU1) n = 39. 
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Figure 2. Camera images of black bears in the study landscapes. Top to bottom: adult, cubs, 
yearling.  
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Bear demographic data 

To examine patterns in black bear habitat selection, we evaluated habitat use separately 

for two demographic groups: (1) females with young and (2) solitary adults, within each of the 

three seasons during the active period. We first used the Timelapse images to obtain independent 

detection events for bears, which were those that occurred a minimum of 30 minutes apart, and 

recorded the age class data (i.e., whether the bear(s) detected in images were young of year, 

young of last year, or adults). One error that needed to be accounted for during this step was false 

cub absences. This can occur due to the way that independent detection events are classified, by 

taking the tagged information of the individual(s) in only one of the images or episodes (series of 

images that occur less than one minute apart) of those that occur within 30 minutes of each other. 

It is possible that a female bear could be detected without her cubs first, resulting in the detection 

being classified as a solitary adult, but her cubs appear in subsequent photos. To minimize this 

error, we determined the max group count for each age class within an independent detection 

event and used this value to define demographic values. We classified females with young as 

episodes having a group count of cubs or yearlings greater than zero, and solitary adults as 

episodes with a group count of adults greater than zero, and a group count of cubs or yearlings 

equal to zero.  

We then constructed a proportional binomial response variable (hereafter “occurrence 

frequency”) for whether a bear demographic group was detected (1) or not (0) at a site during an 

occasion period (15 days). The number of occasion periods with presences/absences were 

summed for each demographic within three seasons with seasonal boundaries defined by 

hunting/vegetation seasons: spring (April 1st – June 14th), summer (June 15th – August 28th), and 

fall (August 29th – November 11th). Winter was not considered because bears are hibernating and 
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thus not usually active during this period. Since not all cameras were active throughout all 

occasion periods, only occasion periods with a camera active for greater than 6 days (half of the 

occasion period) were considered.  

Predictor variables  

 For predictors of bear occurrence, we examined four categories of predictors 

hypothesized to influence habitat selection: 1) prey species, 2) polygonal disturbance features, 3) 

linear disturbance features, and 4) natural landcover. In terms of prey, we calculated total 

independent detections for three species: hare, moose, and white-tailed deer, at each site within 

each season. We did not consider other prey species (ex., caribou) due to lack of detections.  

 We obtained anthropogenic landcover data from the current version of the Alberta 

Biodiversity Monitoring Institute’s (ABMI) Human Footprint Inventory (Alberta Biodiversity 

Monitoring Institute 2019). In terms of linear features, we retained roads, seismic lines, 3D 

seismic lines, pipelines, transmission lines, and trails. For polygonal features, we considered well 

sites and harvest blocks. Natural landcover data on the distribution of shrubland, grassland, 

broadleaf forest, coniferous forest, and mixed-wood forest was obtained from the most recent 

version of ABMI’s Wall-to-wall Land Cover Map (Alberta Biodiversity Monitoring Institute 

2010). Since the scale at which the analysis is performed around camera sites is important for 

species habitat selection (Fisher et al. 2011), we extracted the proportion of natural and 

anthropogenic landcover features within a series of concentric circular buffers around each 

camera site (ranging from 250m to 1500m, increasing at 250m increments).  

Assessing correlation of predictors 

At each spatial scale, we assessed collinearity among predictor variables using Pearson’s 

correlation coefficient, ensuring that all pairwise combinations were below a threshold value of 
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0.7 (Zuur et al. 2010a). We removed coniferous forest due to collinearity with broadleaf forest, 

since forest cover in this region is typically one or the other. Pipelines and transmission lines 

were also highly collinear, so we combined these features since they share similar ecological 

function. The 1500m buffer was chosen as the largest buffer size because roads and well pads 

became highly correlated at greater distances, and both covariates were key parameters of 

interest that could not be removed from the analysis. 

Model structure and candidate set  

To evaluate which predictor variable(s) best explain black bear distributions, we created a 

candidate set of generalized linear mixed models (GLMMs) with binomial distribution and logit-

link function (Table 1). Each model in the set was founded upon a hypothesis of what could best 

explain bear occurrence considering the four predictor categories. We had models within each 

category (ex., a “polygonal features” model containing well sites and harvest blocks). For linear 

features, we had a model for roads and a separate model for features commonly used by off-

highway vehicles (OHVs) containing seismic lines, 3D seismic lines, pipelines/transmission 

lines, and trails, due to difference in disturbance type and degree of vegetation. For natural 

landcover, we considered a “forest model” (broadleaf and mixed-wood forest) and an “open 

habitat model” (grassland and shrubland). We also had several combination models where 

predictor categories were combined for a reason (ex., a “total anthropogenic disturbance 

features” model that combined linear and polygonal features) as well as global and null models. 

To ensure comparability, all predictor variables included in models were z-scaled (mean = 0, sd. 

= 1) using the ‘scale’ function in R.  

For both demographic groups, out of the range of buffer distance, the spatial scale that 

produced the lowest AIC score for the global model was 250-m, so we proceeded to evaluate 
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candidate models at this scale. For solitary adults, candidate models were evaluated separately 

within each season. Additionally, for comparison of a seasons-based approach versus the 

approach of disregarding season as done in many past studies, model selection was performed 

for the three seasons combined. In the case of females with young, there were not enough 

detections within individual seasons to perform separate analyses, so models were evaluated for 

the seasons combined with season as an interaction (see Table 2 for modified model set). This 

approach was not ideal as it did not identify a top model for each season, but was the best option 

given data limitations. To reduce the complexity of models containing interaction terms, the 

model set was modified to create the predictor variable “OHV linear features” which combined 

linear features used by off-highway vehicles together. Each model including season as an 

interaction with predictors was paired with an identical model without season to determine 

whether occurrence near predictors varied temporally. A model with solely season as a predictor 

was also added to the model set, and the global model was eliminated due to complexity.  

Random effect structure 

For solitary adults, “landscape unit” was considered as a random effect in each model as 

these were spread across space and defined by varying degrees of disturbance. The fit of this 

random effect was evaluated using AIC, which indicated that for summer and combined season 

models, including random effect was better supported than omitting it (Appendices Table 4), 

suggesting there is variation to be accounted for between landscape units. Although for spring 

and fall the model without landscape unit as a random effect emerged on top, the random effect 

was retained across all seasons for consistency. For females with young, the data frame was 

structured differently, consisting of three observations per site (one per season), so a nested 

random effect structure with “array” and “site” was used to avoid pseudoreplication. The nested 
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random effect structure was also better supported via AIC in comparison of intercept only 

models with just array, just site, and the null model.   

Model validation and predictions  

For each analysis, models were ranked in an information-theoretic framework, and AIC 

scores were calculated to evaluate the strength of empirical support for each. Top models were 

evaluated by generating diagnostic plots (package “DHARMa”) and calculating VIF values 

(package “performance”). Odds ratios were calculated and plotted for the top models to visualize 

the effect of these predictors on bear occurrence. 

 
Table 1. Candidate model set used to determine the influence of predictor variables on solitary 
adult occurrence. The model set was evaluated for each season, and for all seasons combined.  
 

Bear occurrence best explained by:  
 

Candidate model name Predictor variables  

Roads   Roads  Roads  

Linear features 
used by OHVs  

 OHV Seismic lines + 3D seismic lines + pipelines 
and transmission lines + trails 

All linear features 
(Roads + OHV) 

 Linear  Roads + seismic lines + 3D seismic lines + 
pipelines and transmission lines + trails 

Polygonal features  Polygonal Harvest sites + wells  

 
 

Linear and polygonal features  Linear + Polygonal  Roads + seismic lines + 3D seismic lines + 
pipelines and transmission lines + trails + 
harvest sites + wells  

Open natural habitat  Open natural  Grassland + shrubland 

Open foraging areas  Polygonal + Open natural  Harvest sites + wells + grassland + shrubland 

Forest Forest Broadleaf forest + mixed forest 

All natural landcover Open natural + Forest  Grassland + shrubland + broadleaf forest + 
mixed forest 

Prey species  Prey Moose + white-tailed deer + hare 
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Prey and linear features  Prey + Linear Moose + white-tailed deer + hare + roads + 
seismic lines + 3D seismic lines + pipelines 
and transmission lines + trails  

Prey and roads  Prey + Roads  Moose + white-tailed deer + hare + roads 

Food sources (forage and prey) Prey + Linear + Polygonal  Moose + white-tailed deer + hare + roads + 
seismic lines + 3D seismic lines + pipelines 
and transmission lines + trails + harvest sites 
+ wells 

Food sources without roads Prey + OHV + Polygonal  Moose + white-tailed deer + hare + seismic 
lines + 3D seismic lines + pipelines and 
transmission lines + trails + harvest sites + 
wells 

Global  Global  Moose + white-tailed deer + hare + roads + 
seismic lines + 3D seismic lines + pipelines 
and transmission lines + trails + harvest sites 
+ wells + grassland + shrubland + broadleaf 
forest + mixed forest  

Null Null  1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Candidate models used to determine the influence of predictor variables on female with 
young occurrence. “OHV linear features” combines traditional seismic lines, 3D seismic lines, 
pipelines/transmission lines, and trails together into one variable. Candidate models are 
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otherwise identical to solitary adult models, but each has a duplicate model with season as an 
interaction with each predictor variable. An additional model with only season is also present.  
 

Bear occurrence best explained by:  
 

Candidate model name Predictor variables  

Roads   Roads  Roads  

Roads with season interaction   Roads*Season  Roads*season 

Linear features used by OHVs   OHV OHV linear features  

Linear features used by OHVs with 
season interaction  

 OHV*Season OHV linear features*season 

All linear features (Roads + OHV)  Linear  Roads + OHV linear features  

All linear features (Roads + OHV) 
with season interaction  

 Linear*Season Roads*season + OHV linear features*season  

Polygonal features  Polygonal Harvest sites + wells  

 
 

Polygonal features with season 
interaction 

Polygonal*Season Harvest sites*season + wells*season 

Linear and polygonal features  Linear + Polygonal  Roads + OHV linear features + harvest sites 
+ wells  

Linear and polygonal features with 
season interaction 

Linear*Season + 
Polygonal*Season 

Roads*season + OHV linear features*season 
+ harvest sites*season + wells*season  

Open natural habitat  Open natural  Grassland + shrubland 

Open natural habitat with season 
interaction  

Open natural*Season Grassland*season + shrubland*season 

Open foraging areas  Polygonal + Open natural  Harvest sites + wells + grassland + shrubland 

Open foraging areas with season 
interaction  

Polygonal*Season + Open 
natural*Season 

Harvest sites*season + wells *season + 
grassland*season + shrubland*season 

Forest Forest Broadleaf forest + mixed forest 

Forest with season interaction  Forest*Season Broadleaf forest*season + mixed 
forest*season 

All natural landcover Open natural + Forest  Grassland + shrubland + broadleaf forest + 
mixed forest 
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All natural landcover with season 
interaction  

Open natural*Season + 
Forest*Season  

Grassland*season + shrubland*season + 
broadleaf forest*season + mixed 
forest*season 

Prey species  Prey Moose + white-tailed deer + hare 

Prey species with season interaction  Prey*Season Moose*season + white-tailed deer*season + 
hare*season 

Prey and linear features  Prey + Linear Moose + white-tailed deer + hare + roads + 
OHV linear features  

Prey and linear features with season 
interaction  

Prey*Season + Linear*Season Moose*season + white-tailed deer*season + 
hare*season + roads*season + OHV linear 
features*season  

Prey and roads  Prey + Roads  Moose + white-tailed deer + hare + roads 

Prey and roads with season interaction Prey*Season + Roads*Season Moose*season + white-tailed deer*season + 
hare*season + roads*season 

Food sources (forage and prey) Prey + Linear + Polygonal  Moose + white-tailed deer + hare + roads + 
OHV linear features + harvest sites + wells 

Food sources (forage and prey) with 
season interaction  

Prey*Season + Linear*Season + 
Polygonal*Season  

Moose*season + white-tailed deer*season + 
hare*season + roads*season + OHV linear 
features*season + harvest sites*season + 
wells*season 

Food sources without roads Prey + OHV + Polygonal  Moose + white-tailed deer + hare + OHV 
linear features + harvest sites + wells 

Food sources without roads with season 
interaction  

Prey*Season + OHV*Season + 
Polygonal*Season  

Moose*season + white-tailed deer*season + 
hare*season + OHV linear features*season + 
harvest sites*season + wells*season 

Season  Season  Season  

Null Null  1  

 
 
 
 
Results 

Detections  
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Across the six landscapes, images were collected from 233 sites with each camera 

operational for approximately one year beginning in either 2021 or 2022. Images resulted in a 

total of 459 independent detections of cubs or yearlings, and 1471 independent detections of 

solitary adults. By season, independent detections of solitary adults were as follows: spring, 309; 

summer, 746; and fall, 416. For females with young, these were: spring, 63; summer, 235; fall, 

78. Proportion of detections in each season varied (Figure 3).  

 

 
 
Fig. 3. Proportion of detections (occasion periods present/total number of occasions) of solitary 
adults and females with young within each season. Detections were greatest in the summer for 
both demographics.  
Solitary adult habitat selection 
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Within each season, the 250-meter buffer distance was the best supported scale for 

habitat selection by solitary adults. In spring, the prey and roads model best explained solitary 

adult occurrence (AICw = 0.83; Table 3). Solitary adults exhibited a strong negative association 

with roads (β = -0.37, [95% CI: -0.55 – -0.17], P < 0.001; Figure 4; Figure 5; Table 7) but were 

positively associated with all three prey species, most strongly with moose (β = 0.29, [95% CI: 

0.15 – 0.44], P < 0.001; Figure 4; Figure 6; Table 7) and white-tailed deer (β = 0.16, [95% CI: 

0.01 – 0.32], P = 0.037; Figure 4; Table 7). 

In summer, the OHV linear features model was best supported (AICw = 0.67; Table 3). 

The linear features model (Roads + OHV) was within 2 ΔAIC, indicating that the addition of 

roads to OHV linear features provides some explanatory power, but not enough to overcome the 

parameter penalty. In summer, solitary adults associated negatively with 3D seismic lines (β = -

0.17 [95% CI: -0.34 – -0.01], P = 0.04; Figure 4; Table 7) and pipelines/transmission lines (β = -

0.17 [95% CI: -0.34 – 0.00], P = 0.05; Figure 4; Table 7), but positively with trails (β = 0.17 

[95% CI: 0.06 – 0.29], P = 0.0037; Figure 4; Table 7). Interestingly, upon examining the summer 

linear features model bears no longer avoided roads (β = -0.04 [95% CI: -0.18 – 10], P = 0.61; 

Figure 5).   

In fall, the prey and linear features model was best supported (AICw = 0.43; Table 3). 

The linear features model was within 2 ΔAIC indicating that despite the parameter penalty, the 

addition of prey species to this model is important for explaining occurrence. Solitary adults 

exhibited a strong negative response to roads (β = -0.37 [95% CI: -0.55 – -0.19], P < 0.001; 

Figure 4; Figure 5; Table 7). They also associated negatively with other linear features: 

traditional seismic lines (β = -0.19 [95% CI: -0.35 – -0.03], P = 0.021; Figure 4; Table 7) and 

pipelines/transmission lines (β = -0.30 [95% CI: -0.53 – -0.07], P = 0.01; Figure 4; Table 7). In 
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terms of prey species, solitary adults positively associated with hare (β = 0.14 [95% CI: 0.01 – 

0.27], P = 0.029; Figure 4; Table 7) and white-tailed deer (β = 0.12 [95% CI: -0.02 – 0.26], P = 

0.10; Table 7), but were indifferent to moose.  

Model selection was also performed across all seasons combined to compare these results 

to those of a seasonal approach. In the combined approach, the prey and linear features model 

was the best predictor of solitary adult occurrence (AICw = 0.69; Table 3) with the global model 

second. In terms of linear features, solitary adults negatively associated with roads (β = -0.14 

[95% CI: -0.25 – -0.04], P = 0.0066; Figure 7; Table 7), traditional seismic lines (β = -0.12 [95% 

CI: -0.21 – -0.03], P = 0.0063; Figure 7; Table 7), 3D seismic lines (β = -0.17 [95% CI: -0.28 – -

0.06], P = 0.0018; Figure 7; Table 7), and pipelines/transmission lines (β = -0.10 [95% CI: -0.20 

– 0.01], P = 0.070; Figure 7; Table 7), and positively associated with trails (β = 0.09, [95% CI: 

0.02 – 0.17],P = 0.018; Figure 7; Table 7). With respect to prey, solitary adults positively 

associated with moose (β = 0.15 [95% CI: 0.07 – 0.23], P < 0.001; Figure 7; Table 7) and hare (β 

= 0.08 [95% CI: 0.01 – 0.15], P = 0.028; Figure 7; Table 7).  
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Table 3. Top models (within 2 ∆AIC) for occurrence of solitary adults within each season and for females with young. See Table 6 
(Appendices) for rankings of all models in each analysis.  

 
 
 
 
 
 
 
 
 

 

Demographic Season Top buffer (m) Top models  
 

df log-lik AIC ΔAIC AICw 

Solitary adults Spring 250 Prey + Roads 6 -244.06 500.58 0.00 0.83 

Summer 250 OHV 6 -395.47 803.31 0.00 0.67 

Linear 7 -395.34 805.18 1.87 0.26 

Fall 250 Prey + Linear 
 

10 -302.66 626.31 0.00 0.43 

Linear 7 -306.57 627.63 1.33 0.22 

All 250 Prey + Linear 10 -577.77 1176.54 0.00 0.69 

Females with 
young 

All 250  Linear*Season 11 -483.19 988.78 0.00 0.77 
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Figure 4. Beta coefficient plots of best supported model of solitary adult occurrence in each season (spring: prey and roads; summer: 
OHV linear features; fall: prey and linear features). Values <1 indicate a negative predictor of occurrence, values >1 indicate a 
positive predictor of occurrence. Bars represent 95% confidence intervals.  
*Wtd = White-tailed deer 
*Pipe/Trans = Pipelines and transmission lines 
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Figure 5. Predictive plots of changes in solitary adult occurrence with increasing road density (proportion of the 250-meter buffer 
designated as roads) for each season. The ribbon around each line represents the 95% confidence interval. Solitary adult occurrence is 
expected to decrease with increasing road density in the spring and fall but be relatively unaffected by road density in the summer, 
which is also the non-hunting season. 
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Figure 6. Predictive plot indicating that solitary adult occurrence is expected to increase with 
increasing moose abundance in spring. The ribbon represents the 95% confidence interval. 
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Figure 7. Beta coefficient plots of best supported model for solitary adults across all seasons 
combined (the prey and linear features model). Values <1 indicate a negative predictor of 
occurrence, values >1 indicate a positive predictor of occurrence. Bars represent 95% confidence 
intervals.  
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Figure 8. Beta coefficients plotted for predictors in the best supported model for cubs (the 
Linear*Season model). “Summer” was selected as the reference season. Bars represent 95% 
confidence intervals. 
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Figure 9. Predictive plot indicating that female with young occurrence is expected to decrease with increasing road density in each 
season. The ribbon represents the 95% confidence interval. 
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Figure 10. Predictive plot of changes in female with young occurrence with increasing density of OHV linear features in each season. 
Occurrence is expected to decrease in the spring and fall but slightly increase in the summer. The ribbon represents the 95% 
confidence intervals.                                                             
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Female with young habitat selection   1 

 The 250-meter buffer distance was also the best supported scale for habitat selection by 2 

females with young. The linear features model with season as an interaction best explained 3 

cub/yearling occurrence across the three seasons (AICw = 0.77; Table 3). Occurrence was 4 

strongly negatively associated with roads in the reference (non-hunting) season, summer (β = -5 

0.66, [95% CI: -0.93 – -0.38], P < 0.001; Figure 8; Figure 9; Table 7), and this remained negative 6 

in the spring and fall with effect sizes not different from zero (P spring = 0.08, P fall = 0.22). 7 

Occurrence was not altered by OHV linear features in the summer (β = 0.07, [95% CI: -0.19 – 8 

0.33], P = 0.59; Figure 8; Figure 10; Table 7), however the interaction terms signalled a strong 9 

negative association in the spring (β = -0.43, [95% CI: -0.98 – 0.12], P = 0.12) and fall (β = -10 

0.67, [95% CI: -1.27 – -0.06], P = 0.03).  11 

 12 

Discussion 13 

 In support of our first hypothesis, we found that bear occurrence in relation to predictor 14 

variables, including disturbance features, varied seasonally. Our second hypothesis was also 15 

supported, as mothers with young responded differently to disturbance features than solitary 16 

adults. These findings highlight the importance of considering season and demographic when 17 

analyzing black bear habitat selection to identify fine-scale patterns that would otherwise be 18 

missed.  Although our hypotheses were supported, the relationship of occurrence to disturbance 19 

features did not always correspond with our predictions. This will be discussed for the different 20 

predictor categories. 21 

  22 
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Linear features   23 

 Occurrence of both demographics was strongly influenced by linear features across 24 

seasons. For solitary adults, roads and/or OHV linear features were consistently retained in the 25 

top model explaining occurrence in each season, and the “linear features” model was the top 26 

model for females with cubs.  27 

Solitary adult bear’s seasonal association with roads was in accordance with our 28 

prediction bears strongly avoided roads during the spring and fall, but did not avoid roads in the 29 

summer. As roads serve as major access routes for hunters in the spring and fall hunting seasons, 30 

road avoidance during these periods could be a risk response. This would support the findings of 31 

Stillfried et al. (2015), who found that bears increase road avoidance during hunting seasons. 32 

Ordiz et al. (2012) and Price et al. (2024) also found bears appear to be aware of hunting threat, 33 

altering their behaviour to avoid hunter encounters. However, solitary adult occurrence relative 34 

to other linear features that hunters might access via OHV did not follow the exact same pattern. 35 

In fall, in accordance with our prediction of hunting risk aversion, bears strongly avoided 36 

traditional seismic lines and pipelines/transmission lines. But in spring, bear occurrence was not 37 

influenced by any of these features except a slight avoidance of seismic lines. This could be 38 

because when forage is scarce in the spring, bears need to move about more in search of 39 

vegetation and prey (Young and Ruff 1982), and might be more prone to use linear features for 40 

movement subsidies despite hunting risk. In summer, we expected bears to be attracted to linear 41 

features for forage subsidies in the absence of hunting risk. However, solitary adults were only 42 

attracted to trails and avoided 3D seismic lines and pipelines/transmission lines. This suggests 43 

that there could be a risk response to linear features in summer as well, perhaps to avoid 44 

recreational vehicle activity, that outweighs any forage subsidies linear features might provide. 45 
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Linear feature use has also been shown to be driven by fine scale characteristics such as the 46 

presence of certain forage species and height of online vegetation (Tattersall et al. 2023b), which 47 

we did not consider in this analysis.  48 

Females with young strongly avoided roads in all seasons. This suggests that roads could 49 

be perceived as risky to mothers from high human use in all seasons, despite the benefit they 50 

may have for vegetation subsidies and as a human shield from infanticide (especially when 51 

solitary adults are avoiding roads in the spring and fall). One explanation is that females with 52 

young are not aware of their protection from hunting as some sources suggest (Ordiz et al. 2012, 53 

Stillfried et al. 2015), and the risk is amplified with cubs in their protection. A review of black 54 

bear life history traits found that hunting best explained adult female mortality, even over food 55 

resource availability (Metthé et al. 2025). However, females with young only avoided OHV 56 

linear features in the spring and fall, but not in the summer. If linear feature avoidance is a risk 57 

response to hunting activity/human presence, then this change in pattern relative to road 58 

avoidance could be explained by the fact that roads experience consistent human use in all 59 

seasons, whereas use of OHV linear features likely is decreased or less disruptive (i.e., no 60 

gunshots) in the summer relative to spring and fall.  61 

Polygonal features  62 

Wells and harvest sites did not have a strong influence on occurrence of either 63 

demographic or were not retained in any of the top models. For solitary adults, there was no 64 

response to these features in any season. This ran counter to our prediction that solitary adults 65 

would avoid polygonal features during the hunting season (due to exposure) and utilize them for 66 

forage in the summer. It is especially interesting that bears were not attracted to polygonal 67 

features in the non-hunting season since many sources indicate these areas support berry-68 
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producing species (Brodeur et al. 2008, Nielsen et al. 2020), many of which are shade-intolerant, 69 

and found bears used them for foraging (Brodeur et al. 2008, Mosnier et al. 2008, Lesmerises et 70 

al. 2015). There was also no association with polygonal features in any season for females with 71 

young. We came up with a several explanations that could explain this lack of relationship. First, 72 

it is possible that across the landscape polygonal features are subject to varying levels of human 73 

presence. This could especially be true for well pads, where some receive frequent servicing and 74 

others are entirely abandoned. Then, bears may be utilizing polygonal features with less human 75 

activity, and avoiding those with more activity, resulting in a net zero relationship. Second, a 76 

management practice is to apply herbicide (ex., glyphosate) to cut blocks post-harvest, which 77 

could reduce forage availability and quality, and is suggested as a possible reason for moose 78 

avoiding these features (Carroll et al. 2024). Finally, it is possible that there are other areas, like 79 

open pine stands (Pelchat and Ruff 1986), with an abundance of berries, and polygonal features 80 

are thus not that attractive as forage sites.  81 

Prey  82 
Prey species presented in the top models for solitary adults in the spring and fall. In 83 

spring, solitary adults were positively associated with all three species, and most strongly with 84 

moose. Animal prey may serve as a more important source of calories during spring when 85 

vegetation quality is poorer, and berries have not yet emerged (Young and Ruff 1982, Zager and 86 

Beecham 2006). It was expected that bears would be positively associated with moose as many 87 

sources indicate calf predation (Garneau et al. 2007, Bastille-Rousseau et al. 2011, Moore et al. 88 

2024), especially during the period of 0 - 5 weeks of age (Moore et al. 2024). In fall, solitary 89 

adult bears were positively associated with hare, suggesting that hare may also be of dietary 90 

importance in this season. However, the three prey species were not present in the top model for 91 

females with young, and even upon examining the best-supported model that included prey (the 92 
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prey*season + linear*season model), occurrence was not influenced seasonally by these species. 93 

It is possible that bears with young in tow are not as able to effectively hunt prey and prioritize 94 

other food resources.   95 

Comparing the seasons-based approach to combined seasons analysis for solitary adults 96 

When the same model set was run across all seasons combined for solitary adults, the top 97 

model was the prey and linear features model, with the global model coming in second (∆AICc = 98 

2.78). The high ranking of the global model indicates that in the absence of seasonal 99 

considerations, patterns of bear occurrence are less clear. The beta coefficients of the predictor 100 

variables in the top model also masked fine-scale seasonal patterns: for example, the model 101 

indicates a negative association with roads, but this is not true in the summer and is more 102 

negative than suggested in the spring and fall. Similarly, occurrence is positively related to 103 

moose in this model, but our analysis found this to be false in the summer and fall. These 104 

findings highlight the value of a seasonal approach to identify temporal patterns associated with 105 

species biology that are otherwise masked. 106 

 107 
Limitations  108 

 Several limitations of this study must be noted. First, although the error of false cub 109 

absences was statistically addressed, it is still possible that a female was detected by a camera, 110 

but her cubs never passed in front of the field of view. This would result in the female still being 111 

classified incorrectly as a solitary adult. Second, due to the lack of female with young detections, 112 

we were not able to run candidate models separately for each season. In the case of greater 113 

detections, it would be interesting to take this approach and identify top models per season to 114 

increase the resolution of results. Third, the strength of our conclusions is limited by the lack of 115 

data on hunter distributions across the study area. The Alberta Open Government website has 116 
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records of bear harvests per wildlife management unit (WMU) each year (Alberta Government 117 

2024). However, there is no finer scale metric of where hunters concentrate efforts within each 118 

WMU, and no quantitative data to back the assumption of linear features as a proxy for hunting 119 

intensity. Future work could pair cameras with ARUs to monitor gunshot and OHV noise, 120 

creating a noisescape to incorporate into the analysis of bear occurrence. Fourth, it is possible 121 

that bear feature use could depend on whether it is the day or night. Ordiz et al. (2012) 122 

demonstrated that after the onset of hunting, brown bears moved more during the dark hours and 123 

reduced movement during daylight hours. It would be interesting to investigate diel activity in 124 

relation to feature use, and if this varies seasonally. Last, although we segregated black bears by 125 

demographic, it is likely that as generalists, there is significant individual variation in behaviour 126 

that affects habitat use, as well as territorial boundaries that may impede habitat selection 127 

(Latham et al. 2011a).  128 

Conclusion 129 

 In summary, we found that black bear habitat selection in the OSR in relation to 130 

anthropogenic disturbance features is both influenced by season and demographic and identified 131 

better defined trends in each subcategory. Since some seasonal changes of feature avoidance 132 

(ex., roads) appears to be linked to hunting activity, future work should incorporate a variable of 133 

hunting effort into the analysis. Understanding black bear habitat selection in the OSR is 134 

important to realize their spatial distributions in relation to woodland caribou, as bears are 135 

predators of this at-risk species. Broadly, this study provides key insights into how changing 136 

risk-reward trade-offs drives variation in habitat selection by wildlife over time and between 137 

demographics.  138 

 139 
  140 
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6. ENERGY INFRASTRUCTURE CLEARS THE WAY FOR COYOTES IN 315 

ALBERTA’S OIL SANDS 316 

 317 
Jamie F Clarke, Larissa Bron, Madison Carlson, Sophia Labiy, Zoe Penno, Hayley Webster, 318 

Jason T Fisher, and Marissa A Dyck 319 

 320 

OSM Summary 321 

 Oil sands development occurs against the backdrop of other macroecological changes to 322 

boreal forest systems. Climate is changing, fire regimes are changing, and so too are some 323 

continentally distributed mammal species, such as white-tailed deer and coyotes. Both are 324 

neonative to the boreal forest, having expanded from southern ranges for reasons associated with 325 

anthropogenic landscape development (and climate) but not necessarily oil sands development. 326 

Nonetheless OS does play role in facilitating these expansions into the boreal forest, as clearly 327 

illustrated for white-tailed deer (Fisher et al. 2020, Darlington et al. 2022, Fuller et al. 2023, 328 

Khan et al. 2023). Coyotes may also play a large role in disrupting normal boreal predator-prey 329 

relationships but thus far the effects of OS on coyotes have been examined as part of larger 330 

communities (Fisher and Burton 2018, Fisher et al. 2021c). Here we dive deeper into the role 331 

that some OS features play in coyote distribution across the OSR. We show that wide linear 332 

features play a very strong role, as does the wholesale loss of natural landcover (mature boreal 333 

forest canopy). Any management actions aimed to restore natural boreal forest functioning will 334 

necessarily have to tackle coyote management, and we provide information to guide those future 335 

decisions.  336 

 337 

Introduction 338 

People have profoundly changed the Earth’s surface. More than 75% of the planet’s ice-339 

free land has been anthropogenically modified (Ellis and Ramankutty 2008), affecting both 340 

climate and natural life (Steffen et al. 2005). Land use change – leading to habitat loss and 341 

fragmentation – has altered ecosystem structure and function, to the detriment of biodiversity and 342 

biological interactions (Díaz et al. 2019, Sage 2020). 343 

An example of land use change is Alberta’s oil sands region – a 140,000 km2 stretch of 344 

boreal forest, townsites and First Nations reserves in Nearctic Canada that sit atop one of the 345 
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largest hydrocarbon deposits in the world. The region has undergone intensive resource 346 

development in the last 50-plus years, with timber harvest, road infrastructure and energy 347 

extraction significantly and rapidly altering the landscape (Schieck et al. 2014, Dabros et al. 348 

2017). Decades of cumulative disturbance has created a landscape without historic or global 349 

parallels (Pickell et al. 2015, Fisher and Burton 2018, Dabros and Higgins 2023). 350 

Particularly unique is the density of anthropogenic disturbance. The boreal forest of the oil sands 351 

region is a maze of linear (e.g., roads) and polygonal (e.g., well pads) clearings (Figure 1). Large 352 

swaths of forest have been levelled removed for surface mining operations, with additional mines 353 

exhausted or slated for development (Jordaan 2012). Millions more kilometres have been cleared 354 

to locate deep petroleum deposits and service in-situ wells, creating novel patterns on the 355 

landscape (Timoney and Lee 2001, Jordaan 2012, Roberts et al. 2022). These clearings are 356 

mostly linear corridors, and include geo-survey (seismic) lines, pipelines, power transmission 357 

lines and access roads. In some parts of the oil sands region, the density of seismic lines alone 358 

was estimated to be as high as 40 km/km2 (Stern et al. 2018). On some leases, grid-patterned 3D 359 

seismic lines represent more than 10% of the surface footprint (Kansas et al. 2015). 360 

Such intensive and extensive disturbance affects wildlife species variably. On one hand, wildlife 361 

“winners” are able to capitalize on the movement and forage subsidies linear features (LFs) 362 

provide (Fisher and Burton 2018, Tattersall et al. 2023a). Grey wolves (Canis lupus), for 363 

example, show a preference for LFs, using them to travel farther and faster across challenging 364 

boreal terrain, potentially increasing kill rates (James and Stuart-Smith 2000a, Fryxell et al. 365 

2007, McKenzie et al. 2012, Dickie et al. 2017). Early-seral vegetation (e.g., grasses, forbs, 366 

browse) planted or regrowing along LFs supports non-native, range-expanding white-tailed deer, 367 

improving survival and supporting population growth (Dawe et al. 2014, Darlington et al. 2022). 368 

Wildlife “losers,” on the other hand, struggle under the pressures of forest conversion and 369 

hyperconnectivity (Fisher and Burton 2018). The mature, undisturbed forests that threatened-370 

status woodland caribou (Rangifer tarandus caribou) rely on for shelter and forage are being 371 

fragmented by oil and gas development (Boutin et al. 2012, Lesmerises et al. 2013), with LFs 372 

increasing predators’ access to caribou habitat (Latham et al. 2011b, Whittington et al. 2011, 373 

Demars and Boutin 2018) and potentially shifting caribou distribution (Nellemann et al. 2001). 374 

The influence of energy infrastructure on another member of the oil sands mammal community – 375 

the coyote (Canis latrans) – is not as well understood. Coyotes are relative newcomers to 376 
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northeastern Alberta, having dramatically extended their range in the 20th century to become the 377 

most widely distributed Canis species in North America (Hody and Kays 2018, Ward et al. 378 

2018).   379 

In the western boreal forest, evidence suggests coyotes prefer disturbed sites and 380 

landscapes (Barnas et al. 2024b), and particularly areas of high LF density – potentially using 381 

them as movement corridors – like wolves do (Fisher and Burton 2018, Toews et al. 2018, 382 

Tattersall et al. 2020a). Yet, the kinds of LFs coyotes select for is unclear. Also of interest is the 383 

interplay between energy infrastructure and coyotes’ interspecific interactions. The increased 384 

connectivity and permeability LFs provide (Dickie et al. 2017), coupled with coyotes’ recent 385 

expansion into and success in the region (Burgar et al. 2019), could have important consequences 386 

on other species’ behaviour and distribution (Heim et al. 2017, Lendrum et al. 2018, Mumma et 387 

al. 2019, Chow-Fraser et al. 2022, Fisher and Ladle 2022b, Boczulak et al. 2023). 388 

To better understand which kinds LFs coyotes are using in the oil sands region – and how 389 

predation and competition influence coyote LF use – we used camera trapping (O'Connell et al. 390 

2011, Burton et al. 2015b) to measure coyote relative abundance across six landscapes with 391 

different degrees of development western boreal forest. Generalized linear models informed by 392 

these data, employed an information-theoretic approach, weighed evidence for additive and 393 

interactive models representing several competing hypotheses, sensu Burnham and Anderson 394 

(2002a). We hypothesized that coyote occurrence would 1) increase with LF density; 2) increase 395 

with increasing relative abundance of large and small herbivores, as coyote prey species; and 3) 396 

decrease with increasing relative abundance of wolves and bears as coyote competitor species. 397 

We predicted that coyote occurrence would increase with LF density since LFs provide 398 

movement subsidies for canids (Dickie et al. 2017) and forage subsidies for herbivore prey 399 

(Finnegan et al. 2019, Wittische et al. 2021b, Darlington et al. 2022). We further predicted that 400 

coyote occurrence would increase with higher relative abundance of prey species and decrease 401 

with higher relative abundance of competitor species, as coyotes would frequent prey-rich areas 402 

but avoid overlap with competitors (Ballard et al. 2003). 403 

 404 

Methods 405 

Study Area 406 
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Our study frame was the vast portion of the western boreal forest known as the western 407 

sedimentary basin (Porter et al. 1982), and within this frame our study extent was Canada’s oil 408 

sands region, in northeastern Alberta. The region’s topography is flat-to-undulating and is 409 

composed of upland forests – filled with white pine (Picea glauca), black spruce (Picea 410 

mariana), trembling aspen (Populus tremuloides) and jack pine (Pinus banksiana) – and 411 

Labrador tea- (Rhododendron groenlandicum) dominated lowland muskegs. Winters are 412 

typically long and cold, and summers short and warm; mean temperature of the coldest month is 413 

about -19º C, and 16º C in the hottest month, with about 450 mm of annual precipitation 414 

(Downing and Pettapiece 2006). The boreal forest supports a diversity of mammal species, 415 

including wolves, coyotes, lynx (Lynx canadensis), red foxes (Vulpes vulpes), black bear (Ursus 416 

americanus), fishers (Pekania pennanti), wolverines (Gulo gulo), martens (Martes americana), 417 

woodland caribou, moose (Alces alces) and white-tailed deer (Odocoileus virginianus). 418 

This research was conducted under the joint Canada-Alberta Oil Sands Monitoring 419 

program (Roberts et al. 2022). The study design for this program divides the region into ~1,000 420 

km2 landscape units (LUs) based on hydrological boundaries, with each representing a differing 421 

degree of cumulative development from forestry, roading, and oil and gas exploration and 422 

extraction (Bayne et al. 2021b). LUs were characterized as 1) currently developed for in-situ or 423 

mine extraction, 2) proposed for in-situ development or mine site, or 3) low disturbance 424 

reference site (Bayne et al. 2021b). A subset of LUs representing all three disturbance levels 425 

were selected for this project. 426 

Sampling Design 427 

A total of 233 Reconyx Hyperfire 2X camera traps (Reconyx, Homen, WI) were 428 

deployed in six LUs (Figure 2): one mine site, one proposed in-situ site, two active in-situ sites 429 

and two low-disturbance sites. Camera traps were deployed using a constrained stratified 430 

sampling design. Each LU was divided into 60 2-km2 hexagonal cells using ArcGIS (version 431 

10.3); cells were then categorized as upland (> 50% deciduous) or lowland (> 50% wet 432 

coniferous) forest. About 40 cells (actual range: 36-42) were selected for camera trap 433 

deployment, with forest types represented roughly equally. We chose a constrained stratified 434 

design to control for natural variability, to tease out the effects of industrial development on 435 

mammal communities. 436 
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In each selected cell, a was deployed at least 100 m from roads or trails and 1 km from 437 

other camera stations. Cameras were set about 0.5 m off the ground and pointing down a well-438 

used wildlife trail. Ca. 40 mL of scent lure (Long Distance Call, O’Gorman’s, MT) was spread 439 

on a tree within each camera’s viewshed. Our design maximizes accessibility and probability of 440 

medium-to-large mammal detections while maintaining site independence (Diniz‐Filho et al. 441 

2003, Hawkins et al. 2007). Cameras were set to take 1 image per motion sensor trigger to 442 

prolong battery life and storage capabilities. 78 cameras were set across two LUs from October 443 

2021-2022 and 155 were set across four LUs from fall 2022-2023, for a maximum duration of 13 444 

months per camera trap. 445 

 446 

 447 

 448 

 449 

 450 
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Figure 1. Aerial depiction of oil sands disturbances, including industrial facilities (large 451 

polygons), well pads (squares), roads (wide lines), conventional seismic lines (straight narrow 452 

lines) and 3D seismic lines (crosshatched, wavy lines). By Scott Heckbert. 453 

  454 
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 455 
Figure 2. Map of camera trap deployments across 6 LUs (light polygons) in the oil sands region 456 
of Alberta. Red dots represent cameras active 2021-2022 (n = 93); blue dots represent cameras 457 
active 2022-2023 (n = 155). Grey lines show road networks, including unpaved roads. Inset: map 458 
of Canada, with Alberta in light grey and the study area enclosed in the black box. 459 
 460 
 461 

Defining Variables 462 

Diet studies show that coyotes mostly consume small mammals, ungulates, vegetation, 463 

and anthropogenic “by-catch” like pets and livestock (Todd et al. 1981, Lukasik and Alexander 464 

2012, Shi et al. 2021, Jensen et al. 2022, Hayward et al. 2023). Analyses of coyote scat from 465 

Alberta indicate that snowshoe hares, rodents and ungulates are some of the most important food 466 

sources for coyotes in the region (Todd et al. 1981, Murray et al. 2015). Although deer and 467 

moose are coyotes’ preferred ungulate prey, there have also been reports of “spill-over” 468 

predation on caribou (Boisjoly et al. 2010, Latham et al. 2011c). We therefore considered 469 
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snowshoe hares, red squirrels, white-tailed deer, caribou and moose as potential coyote prey 470 

species in our analyses. 471 

Interspecific competition is challenging to quantify (Murray et al. 2023), but there is 472 

some evidence of interference and exploitative competition between coyotes and felids, 473 

mustelids and other canids. Coyotes share prey species – including snowshoe hares – with lynx, 474 

for example (Ruggiero 1994, Krebs et al. 2001b). Coyotes and cougars also minimize spatial and 475 

temporal overlap to reduce conflict (Jensen et al. 2024). LFs increase competition between 476 

coyotes and wolverines (Chow-Fraser et al. 2022), while fishers and coyotes both preferentially 477 

prey on small mammals (Weir et al. 2005). Similarly, coyotes appear to be limited by 478 

competition with grey wolves (Berger and Gese 2007). We therefore classified lynx, cougars, 479 

wolverines, fishers and wolves as competitor species. 480 

For interaction models: we chose the single prey and competitor species we believed 481 

exerted the most influence on coyote occurrence, given previous findings. We selected snowshoe 482 

hares as the main prey species, as lagomorphs are a key component of coyote diet (Prugh 2005, 483 

Shi et al. 2021, Hayward et al. 2023), especially in their boreal range (Todd et al. 1981) where 484 

they overlap with wolves (Petroelje et al. 2021). Likewise, we selected wolves as the main 485 

competitor species. Wolves are competitively dominant to coyotes (Merkle et al. 2009), 486 

harassing and sometimes killing coyotes in areas of high wolf-use and density (Miller et al. 2012, 487 

Flagel et al. 2017). Other competitor species (e.g., lynx) do not appear to compete as directly or 488 

intensely. 489 

Coyotes are expected to spatially distribute relative to available natural resources, proxied 490 

by habitat measure using hyperspectral imagery. To quantify natural boreal heterogeneity, 491 

landscape data were derived from the Alberta Biodiversity Monitoring Institute’s wall-to-wall 492 

landcover map (Alberta Biodiversity Monitoring Institute 2024). Landscape features within a 493 

4,750 m radius of each camera station were considered, since it was the top-performing buffer 494 

distance for coyotes in anthropogenically-disturbed areas (Dyck et al., in prep). To avoid 495 

overparameterization in our models, and given coyotes are habitat generalists, we grouped 496 

natural landcover variables (grasslands, shrubland, and coniferous/broadleaf/mixed forest) into a 497 

single covariate (Mastro et al. 2019, Petroelje et al. 2021). 498 

 499 

  500 
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Model Framework 501 

432,391 images (including blanks) were captured across the entire study. Of these, 502 

184,985 were images of mammals (excluding people and domestic dogs). Image data was 503 

processed by trained technicians using Timelapse software (Greenberg and Godin 2012), with 504 

images of the same species captured within 30-minute intervals grouped into independent 505 

detections, not corrected for camera activity. Independent detections of coyotes were also used to 506 

calculate monthly occurrence (hereafter, occurrence) of coyotes at every camera site. Only 507 

cameras with ≥ 15 operational days per month were used to calculate coyote occurrence, to 508 

account for occasional camera failures (Fisher and Ladle 2022b). The response metric was thus 509 

the number of months a coyote was detected, and the number of months a coyote was not 510 

detected, to inform a proportional binomial model wherein each month is a Bernoulli trial 511 

(Crawley 2012, Faraway 2016). Here we considered a zero as a true zero and not partitioned as 512 

error, as is the case with occupancy models (MacKenzie et al. 2002) – if we do not detect a 513 

coyote in a month on a lured wildlife trail we are confident of its absence.  514 

We carried out a two-step model selection to 1) explore which LFs to include in analyses 515 

and 2) test our hypotheses on coyote occurrence. In step 1, we competed different groupings of 516 

LFs (Table S1). In step 2, we tested the effects of LFs, natural landcover, and independent prey 517 

and competitor detections – including interactions between prey and competitor species and LFs 518 

– on coyote occurrence. We used a generalized linear mixed model (GLMM) framework with a 519 

binomial distribution, and set LU as a random effect, for all analyses, such that: 520 

𝜂 = 𝛽# +	𝛽$ ∗ 𝑋$ +	𝛽% ∗ 𝑋% +⋯+ 𝛽- ∗ 𝑋- + 	𝜏 521 

where 𝜂 is the linear predictor, 𝛽# is the intercept, 𝛽- ∗ 𝑋- is a covariate of interest and 𝜏 is a 522 

random effect. The link function, 523 

logit(𝜃) = 	𝜂 524 

was used to predict the effect of covariates on coyote occurrence. Coyote occurrence was 525 

assumed to follow a Bernoulli distribution, 526 

monthly coyote occurrence	~	Bernoulli(𝜃) 527 

whereby each month was considered an independent “trial” and coyotes were either detected (1) 528 

or not (0), with each camera site considered a unique replication (Fisher and Ladle 2022b). We 529 

included LU as a random effect to account for inherent variability between sampling sites 530 

(Supplementary Information). LU was assumed to follow a normal distribution, such that 531 
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LU ~ Normal(0, 𝜎%).	 532 

Models were constructed using the lme4 package (Bates et al. 2024) and ranked using the Akaike 533 

Information Criterion (AIC; Akaike 1973) using the MuMIn package (Bartoń 2024) in R (version 534 

4.3.2). The best-supported models had the lowest AIC scores by ∆ AIC of ≥ 2 (Burnham and 535 

Anderson 2002a). Variables were scaled for standardized comparison between estimated model 536 

coefficients. 537 

Before modelling, we tested multicollinearity between covariates using pairwise Pearson 538 

and Spearman’s correlation tests. Covariates with a correlation coefficient (𝑟) ≥ 0.6 were not 539 

included in the same models. We then calculated variance inflation factor (VIF) in the package 540 

car (Fox et al. 2019) to test for collinearity between covariates in our best fit model. VIFs report 541 

how much of a given covariate’s variability is explained by other covariates, owing to correlation 542 

(Craney and Surles 2002). A VIF value of 1 indicates no correlation, with larger values (e.g., > 543 

5) signalling severe correlation. 544 

 545 

Results 546 

Mammal detections 547 

Camera images generated 15,944 total independent detections of 10 focal species. The 548 

most-detected species was white-tailed deer (6,143), followed by snowshoe hare (4,572), red 549 

squirrel (2,200), coyote (1,319), moose (696), lynx (526), fisher (262) and grey wolf (226). 550 

Caribou, cougars and wolverines had too few detections (115, 37 and 0, respectively) to carry 551 

forward into analyses. Coyotes were detected at 172 of 233 sampling sites (74%). 552 

 553 

Model Selection 554 

In step1, the wide LF model – which grouped LFs > 5 m in width – was top performing 555 

(AICc = 980.4, ∆ AICc = 2.04, weight = 0.58; Table 1). The difference in AIC scores between 556 

the best-performing model (wide LFs) and second-best performing model (all LFs) was > 2, 557 

indicating support for the top model (Burnham and Anderson 2002a, Burnham et al. 2011). Of 558 

the three wide LF types, roads had the strongest positive effect on coyote occurrence (𝛽 = 559 

0.58612 ± 0.05940, 𝑝 < 0.001), with conventional seismic lines also having a positive – but 560 

slightly weaker – influence (𝛽 = 0.18439 ± 0.07357, 𝑝 = 0.0122). Transmission lines had a 561 

negligible effect on coyote occurrence (𝛽 = 0.01404 ± 0.06007, 𝑝 = 0.8152). 562 
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In step 2: the global model, which included terms for natural landcover, wide LFs, and 563 

prey and competitor species, best predicted coyote occurrence (AICc = 921.9, ∆ AICc = 2.09, 564 

weight = 0.74; Table 2). The global model with interactions terms was the second-best 565 

performing. VIF values for all top model covariates were near 1, indicating little collinearity. 566 

The proportion of wide LFs on the landscape retained a strong positive effect on coyote 567 

occurrence (𝛽 = 0.49669 ± 0.06965, 𝑝 < 0.001), additive to detections of small prey snowshoe 568 

hares (𝛽 = 0.18827 ±0.04769, 𝑝 < 0.001), and competitors grey wolves (𝛽 = 0.18952 ± 0.05059, 569 

𝑝 < 0.001) and lynx (𝛽 = 0.16876 ± 0.05007, 𝑝 < 0.001). The odds of coyote occurrence at a 570 

camera site increased by 64% per 1% increase in the proportion of wide LFs (Figure 3, 4). 571 

Likewise, the likelihood of coyote occurrence increased by 10% for each snowshoe hare 572 

detection; 9% for each grey wolf detection; and 7% for each lynx detection. Total white-tailed 573 

deer and red squirrel detections also had a positive relationship with coyote occurrence, but 574 

effective size was smaller (white-tailed deer: 𝛽 = 0.06411 ±	0.06531, 𝑝 = 0.326270; red squirrel: 575 

𝛽 = 0.08085 ± 0.04686, 𝑝 = 0.084450). The area of grouped natural landcover was the only 576 

covariate to have a clear negative effect on coyote occurrence (𝛽 = -0.40375 ± 0.05459, 𝑝 < 577 

0.001), with odds of occurrence decreasing by 60% per 1% increase in natural feature coverage. 578 

Total moose detections had a slight negative relationship, but again, effect size was small (𝛽 = -579 

0.06344 ± 0.05739, 𝑝 = 0.268944). Fishers had a negligible influence on coyote occurrence (𝛽 = 580 

0.01794 ± 0.05042, 𝑝 = 0.722021). 581 

 582 
  583 
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 584 
Figure 3. Odds ratio plot for the global model showing the effects of natural landcover and wide 585 
linear feature density (green box), and of total competitor (blue box) and prey (red box) species 586 
detections, on monthly coyote occurrence. Points represent exponentiated model coefficients; 587 
bars represent 97.5% confidence intervals. 588 
 589 
 590 
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 591 
Figure 4. Proportion of natural landcover and wide LFs near camera trap sites, and total 592 
detections of prey and competitor species, influence monthly coyote occurrence. Lines represent 593 
the predicted relationship between coyote occurrence and covariates ± 95% confidence intervals. 594 
 595 
  596 
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Table 1. Step 1: GLMMs predicting monthly coyote occurrence given LF types. Models are 597 
ranked from most-to-least supported. Model statistics include degrees of freedom (df), logistical 598 
likelihood (logLik), Akaike information criterion score corrected for small sample size (AICc), 599 
difference in AICc score from the best-supported model (∆ AICc) and explanatory value of each 600 
model (AICc weight). 601 

model covariates df logLik AICc ∆ AICc AICc 
weight 

wide LFs roads + seismic lines + 
transmission lines 5 -485.1 980.4 0 0.58 

global model 
roads + seismic lines + 
3D seismic lines + trails 

+ transmission lines 
7 -484.0 982.5 2.04 0.21 

unvegetated 
LFs roads 3 -488.2 982.5 2.05 0.21 

vegetated 
LFs 

seismic lines + 3D 
seismic lines+ trails + 

transmission  
lines 

6 -527.8 1068.0 87.53 0 

narrow LFs 3D seismic lines + trails 4 -533.2 1074.5 94.09 0 
pipelines pipelines 3 -534.3 1074.8 94.34 0 

null --- 2 -537.3 1078.6 98.13 0 
 602 
 603 
Table 2. Step 2: GLMMs predicting monthly coyote occurrence given proportion of landcover 604 
and wide linear features, and total detections of prey and competitor species. Models are ranked 605 
from most-to-least supported. Model statistics include degrees of freedom (df), logistical 606 
likelihood (logLik), Akaike information criterion score corrected for small sample size (AICc), 607 
difference in AICc score from the best-supported model (∆ AICc) and explanatory value of each 608 
model (AICc weight). 609 

model covariates df logLik AICc ∆ AICc AICc 
weight 

global 

natural landcover + wide 
LFs + red squirrel + 
snowshoe hare + white-
tailed deer + moose + 
fisher + lynx + grey 
wolf 

11 -449.3 921.9 0 0.74 

global 
interaction 

natural landcover + red 
squirrel + white-tailed 
deer + moose + fisher + 
lynx +  
wide LFs*snowshoe 
hare + wide LFs*grey 
wolf 

13 -448.2 924 2.09 0.26 

competitor 
species, natural 

natural landcover + wide 
LFs + fisher + lynx + 7 -461.3 937.1 15.25 0 
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landcover and 
wide LFs 

grey wolf 

global 
competitor 
interaction 

natural landcover + 
fisher + lynx +  
wide LFs*grey wolf 

8 -460.7 938.1 16.2 0 

global prey 
interaction 

natural landcover + red 
squirrel + white-tailed 
deer + moose +  
wide LFs*snowshoe 
hare 

9 -461.0 940.8 18.95 0 

prey species, 
natural 

landcover and 
wide LFs 

natural landcover + wide 
LFs + red squirrel + 
snowshoe hare + white-
tailed deer + moose 

8 -146.2 941 19.12 0 

natural 
landcover and 

wide LFs 

natural landcover + wide 
LFs 4 -479.0 966.2 44.34 0 

prey species and 
natural 

landcover 

natural landcover + red 
squirrel + snowshoe 
hare + white-tailed deer 
+ moose 

7 -480.9 976.2 54.33 0 

competitor 
species and 

natural 
landcover 

natural landcover + 
fisher + lynx + grey 
wolf 

6 -489.1 990.5 68.62 0 

prey species and 
wide LFs 

wide LFs + red squirrel 
+ snowshoe hare + 
white-tailed deer + 
moose 

7 -489.9 994.3 72.44 0 

prey interaction 

red squirrel + white-
tailed deer + moose + 
wide LFs*snowshoe 
hare 

8 -489.4 995.5 73.61 0 

competitor 
species and 
wide LFs 

wide LFs + fisher + lynx 
+ grey wolf 6 -492.3 996.9 75.01 0 

competitor 
interaction 

fisher + lynx +  
wide LFs*grey wolf 7 -491.7 997.8 75.91 0 

natural 
landcover natural landcover 3 -503.7 1013.6 91.69 0 

prey species 
red squirrel + snowshoe 
hare + white-tailed deer 
+ moose 

6 -512.2 1036.8 114.89 0 

competitor 
species 

fisher + lynx + grey 
wolf 5 -522.6 1055.5 133.63 0 

null --- 2 -537.3 1078.6 156.69 0 
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 610 
Discussion 611 

Range-expanding coyotes occur across the Canadian oil sands region of the western 612 

boreal forest, and anthropogenic linear features are paving the way. Across multiple landscapes 613 

spanning a gradient of disturbance, coyote relative abundance was much higher with high density 614 

of wide linear features, and much lower in natural landscapes. Contrary to expectations, coyotes 615 

did not avoid competitors, but rather clustered with them in space where prey abundance was 616 

high.  The prevalence of wide LFs within 4,750 m of a camera site had the strongest positive 617 

effect on coyote occurrence, while proportion of natural landcover had the strongest negative 618 

effect. Total grey wolf, lynx and snowshoe hare detections had a positive, but smaller, signal. 619 

These findings lend support to our hypotheses that coyote occurrence is positively related to LF 620 

density and prey species relative abundance, but did not support our hypothesis that coyotes 621 

would avoid overlap with competitor species. 622 

Wide LFs – especially roads and seismic lines – had the largest positive effect on coyote 623 

occurrence. Coyotes may have selected areas of high wide LF density because these corridors are 624 

long, straight and unobstructed, maximizing travel speed, distance covered and line-of-sight for 625 

movement and hunting compared to narrow LFs or forest patches (Dickie et al. 2017). Our 626 

findings are in line with other studies from the oil sands region linking coyotes and wide LFs 627 

(Skatter et al. 2020, Beirne et al. 2021a), and particularly roads (Fisher and Burton 2018, Fisher 628 

and Ladle 2022b). Many roads within the oil sands region are low-traffic access routes, with less 629 

road-use risk (Van Scoyoc et al. 2024) to weigh against the benefits of roadside hunting and 630 

scavenging, and easy movement.  631 

Importantly, the wide LF model (which included roads, seismic lines and transmission 632 

lines) outperformed the road-only LF model, indicating seismic lines’ importance (the effect of 633 

transmission lines was negligible). Roads had the strongest predictive effect on coyote 634 

occurrence but seismic lines the second-strongest, suggesting they could provide alternate or 635 

additive pathways to roads – which bring wildlife into closer contact with people and increase 636 

chances of vehicle strikes (reviewed in Coffin 2007). Coyotes may also exploit seismic lines 637 

simply because they are much more pervasive than roads. Within our study LUs and site buffer 638 

radius, seismic lines had a mean proportional coverage of 0.7% compared to 0.4% for roads; 639 

moreover, seismic lines were represented within-buffer-radius for 99% of camera sites versus 640 
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87% for roads. Coyotes may therefore select seismic lines as a “second choice” LF because they 641 

are structurally similar (e.g., unobstructed, straight) and abundant. 642 

Coyote occurrence was negatively related to the proportion of natural landcover. The 643 

boreal forest is difficult for wildlife to move through, with dense trees, fallen woody debris 644 

(Hansson 1992) and bogs. Cleared and compacted LFs increase movement rates for hunting, 645 

monitoring, communication and travel through this otherwise challenging landscape (Dickie et 646 

al. 2017). Even given the choice between natural (e.g., waterways) and disturbed corridors, 647 

canids have been shown to select human-made LFs, especially as anthropogenic LF density 648 

increases (Newton et al. 2017). LFs likely represent the least-cost path for coyotes, versus 649 

relatively movement-resistant natural landcover (Sawyer et al. 2011). 650 

Contrary to our last hypothesis, coyotes co-occurred with competitor species – 651 

particularly grey wolves and lynx. One potential explanation is that coyotes aggregate near 652 

competitors to feed on their kills (Paquet 1992, Wilmers et al. 2003). Coyotes are facultative 653 

scavengers (Walker et al. 2021) that have been shown to consume more carcasses when wolves 654 

are on the landscape (Switalski 2003, Atwood and Gese 2008). The strong predictive signal of 655 

wolf detections on coyote occurrence, coupled with the knowledge that LFs may improve 656 

predation rates for wolves (Messier and Crête 1985, Fryxell et al. 2007, Dickie et al. 2017), 657 

could indicate a higher number of wolf kills and subsequently more scavenging by coyotes. 658 

The outcomes of wolf-coyote competitive interactions also depend on group size. Wolves 659 

are considered to be the dominant canid (Levi and Wilmers 2012), with many documented cases 660 

of wolves killing coyotes in direct competition (see Mech and Boitani 2019). Wolves can, 661 

however, can be overrun or harassed by coyotes when outnumbered (Merkle et al. 2009). In 662 

some parts of the oil sands region, coyote density is triple that of wolves (Burgar et al. 2019), 663 

and wolf culls for caribou recovery can further reduce wolf population sizes (Hervieux et al. 664 

2014, Grente et al. 2024). Thus, coyotes may be abundant enough in our study area to reduce 665 

interference competition with wolves. Coyotes often choose to scavenge on wolf kills, despite 666 

the potential risks (Paquet 1992); taken together, our findings could suggest that trade-off is 667 

further skewed in the oil sands, where coyotes can outnumber wolves, altering dominance 668 

structures and potentially resulting in high rates of scavenging and spatial overlap. 669 

Interacting species must partition time, space or resources to coexist (Schoener 1974). An 670 

alternative interpretation of overlapping detections, then, is that coyotes and their competitors 671 
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partition prey species instead of locking in a “space race” (Muhly et al. 2011). Coyotes and 672 

wolves do not typically compete for live prey (Arjo and Pletscher 2000, Arjo et al. 2002): 673 

coyotes tend to hunt smaller species (e.g., lagomorphs and rodents; Murray et al. 2015, Hayward 674 

et al. 2023) or weaker ungulates (e.g., fawns/calves and adults in poor condition; see Gese and 675 

Grothe 1995) while wolves take large ungulates (deer, elk, moose and caribou; Newsome et al. 676 

2016). This could explain why ungulate detections only weakly influence coyote occurrence: 677 

coyotes in the oil sands do not seem to predate on ungulates often, instead consuming small 678 

mammals and scavenging on wolves’ ungulate kills (Todd and Keith 1983). 679 

Snowshoe hares had a clear, positive influence on coyote occurrence, further suggesting 680 

that they are in important coyote prey species in the boreal (Todd et al. 1981, O’Donoghue et al. 681 

1998). Lynx and coyote diets could therefore considerably overlap in the oil sands region. To 682 

promote spatial overlap, these competitors may consume different proportions of hares (Hinton 683 

et al. 2017), or hare density may be high enough to support both species. To the first point: 684 

coyotes and lynx can prey on other species (e.g., voles and red squirrels) when snowshoe hare 685 

cycles dip (O’Donoghue et al. 1998). To the second point: the hare cycle was likely near its 10-686 

year peak during our sampling period (Skatter et al. 2020). Estimates of peak hare density in the 687 

Yukon and Alaska have been as high as 300 to 1,000 hares/km2 (Ward and Krebs 1985, Slough 688 

and Mowat 1996, Krebs et al. 2001a). Lynx eat roughly two snowshoe hares every three days 689 

when they are plentiful (Government of Northwest Territories); if hare densities were similar to 690 

northern estimates during our camera trap study, competition for food resources may have been 691 

minimal. 692 

Still unknown in this system are coyotes’ impacts on endangered caribou. Spillover 693 

predation, facilitated by hyper-connective LFs (Mumma et al. 2018) and higher coyote 694 

populations, has been posited. Indeed, facultative, disturbance mediated coyote-caribou 695 

predation is likely in an eastern boreal ecosystem (Boisjoly et al. 2010). Our results do not 696 

suggest that ungulates were an important predictor of coyote occurrence during the study period, 697 

and by extension that caribou would be a strong predictor. It is, however, possible that coyote 698 

diet could shift towards ungulates – including caribou – in low-hare years. Previous analyses 699 

have shown that ungulates, including deer and moose, can comprise ¼ to ½ of coyote diet 700 

(Boisjoly et al. 2010, Murray et al. 2015, Shi et al. 2021). Further investigation into patterns of 701 

coyote predation throughout the hare cycle could elucidate the relationship between coyotes and 702 
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endangered caribou and clarify management priorities. It is worth noting that too few caribou 703 

detections were collected to make direct inferences from our dataset. 704 

Future research could also investigate the nuances of coyote LF use throughout the year. 705 

Wolves have been shown to exert seasonal preferences for LF type (Dickie et al. 2017) and 706 

weaker selection for LFs during the wintertime (Latham et al. 2011b); similar patterns in coyotes 707 

may have been masked by the coarseness of our work. Likewise, overlap with prey species could 708 

change seasonally. Other canids tend to consume prey of different sizes during alternating 709 

seasons (Latham et al. 2011e), meaning ungulates could be a better predictor of coyote 710 

occurrence at finer time scales. Ungulates could better-predict coyote occurrence during ungulate 711 

calving, when they are more vulnerable to coyote attacks, as well. 712 

The best-supported buffer size for coyotes in disturbed landscapes resulted in substantial 713 

overlap using our sampling design (Chapter 4), which may prompt concerns about 714 

pseudoreplication (the treatment of non-independent variables as independent; Whitlock and 715 

Schluter 2015). As per Hurlbert (1984), however, independent detections can be influenced by 716 

the same predictor variable values without being pseudoreplicated; more important is sound 717 

sampling design that accounts for systematic variability (Zuckerberg et al. 2020a). We stratified 718 

sampling design at two levels for our study (LU, camera site) to account for natural variability 719 

and to parse out the effects of industrial disturbance. 720 

It is possible that the effect of roads was artificially inflated, since most cameras were 721 

deployed ~100 m from the nearest road. The topography of Alberta’s oil sands region has 722 

changed drastically under the compounding pressures of industry. LFs created for forestry and 723 

energy extraction have fragmented the boreal forest, creating matrices of treed patches connected 724 

by networks of cleared corridors (Pattison et al. 2016). What was previously good habitat for 725 

moose, caribou and lynx has given way to landscapes that support generalist, range-expanding 726 

species like coyotes and white-tailed deer, fundamentally the changing distribution and relative 727 

abundance of mammal populations (Fisher and Burton 2018). 728 

LFs have outsized effects on wildlife ecology (e.g., Trombulak and Frissell 2000, 729 

Whittington et al. 2005, Ibisch et al. 2016); in the oil sands, where LF density is high (Komers 730 

and Stanojevic 2013, Stern et al. 2018), that effect is even more pronounced, influencing 731 

mammals and birds (Lankau et al. 2013, Fisher and Burton 2018, Darling et al. 2019), vegetation 732 

community composition and regeneration (van Rensen et al. 2015, Dabros et al. 2017), and 733 
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interspecific relationships (Heim et al. 2017, Lendrum et al. 2018, Mumma et al. 2019, Chow-734 

Fraser et al. 2022, Fisher and Ladle 2022b, Boczulak et al. 2023). That anthropogenic 735 

disturbance is believed to have a bigger role in the spatial distribution of mammals than natural 736 

ecological processes (Fisher and Ladle 2022b). With thousands of kilometres of new linear 737 

corridors cleared each year (Komers and Stanojevic 2013), a holistic understanding of wildlife 738 

LF use is therefore critical for management and conservation (Latham et al. 2011b, Newton et al. 739 

2017, Finnegan et al. 2023, Benoit-Pépin et al. 2024). 740 

Alberta’s oil sands are the harbinger of a new hydrocarbon age. Global sources of 741 

conventional oil are being depleted (Bentley 2002) and interest retrained on “unconventional” oil 742 

sands deposits – resources that sit beneath thousands of square kilometres of forest (Rosa et al. 743 

2017). Regions considering oil sands development should look to Canada’s north to better 744 

understand how LFs influence wildlife species and interactions and weigh the ecological costs of 745 

energy extraction and habitat restoration with economic benefits. 746 
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 1083 
 1084 
OSM Summary 1085 

 “Whose problem is it anyway?” is a question often heard from industry caucus of OSM. 1086 

One of the principal goals of OSM is to identify which OS features (or other anthropogenic 1087 

features) are causing negative responses for mammal species, so that restoration or other 1088 

mitigation actions can be identified. In past works we have shown that multiple features 1089 

generally contribute to mammals’ responses to development (Dickie et al. 2020a, Serrouya et al. 1090 

2020, Laurent et al. 2021, Wittische et al. 2021b, Dickie et al. 2022, Fisher and Ladle 2022b, 1091 

Roberts et al. 2022, Fuller et al. 2023, Barnas et al. 2024c, Carroll et al. 2024). These highlight 1092 

the complexity of mammal-stressor relationships but cannot fully parse apart relative 1093 

contributions of different features. Were we proposed an analytical approach – structural 1094 

equation modelling – to attempt this task. This approach has been used previously in 1095 

examination of seismic lines (Curveira-Santos et al. 2024) and we show how it can be applied for 1096 

OSM analysis in a proof-of-concept focussing on a primary indicator of large-scale boreal 1097 

change: white-tailed deer. 1098 

 1099 

Introduction 1100 

Species range dynamics are a fundamental focus of ecology; understanding fluctuations 1101 

in distribution and abundance of species and the consequences of these changes is also critical 1102 

for proper management and conservation. Anthropogenic landscape change and climate change 1103 

are two major drivers of species range dynamics. (Hughes 2000, McCarty 2001, Walther et al. 1104 

2002, Thuiller et al. 2008, Dawe and Boutin 2016, Lyn Morelli et al. 2025). More than 75% of 1105 

ice-free land has undergone human-induced modification, meanwhile, the Earth’s climate has 1106 

warmed 0.38 to 0.68 °C over the last 100 years (Change 1995, Ellis and Ramankutty 2008). Such 1107 

drastic change has resulted in the range contraction and expansion of many species. Resulting 1108 

changes to species dynamics are not always easily predicted as effects from climate change and 1109 
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landscape alteration may be conflicting and context dependent. For example, Morelli et al. 1110 

(2025) found that American red squirrels did not shift their range upslope as would be predicted 1111 

by climate warming but rather shifted downslope in response to timber harvest-recovered red-1112 

spruce forests. The expansion and establishment of species outside their native range (i.e., 1113 

neonates) can have widespread consequences for native flora and fauna. Prey species in 1114 

particular, can alter predator-prey dynamics leading to declines in native prey via direct and 1115 

apparent competition (Serrouya et al. 2015).  1116 

In the last century, white-tailed deer (Odocoileus virginianus) populations have 1117 

increased, and they have expanded their range (Veitch 2001, VerCauteren 2003, Dawe and 1118 

Boutin 2016). White-tailed deer have expanded as far north as Canada’s boreal forest where they 1119 

are indirectly attributed to the decline of Caribou (Rangifer tarandus) (Latham et al. 2011d, 1120 

Hervieux et al. 2013, Latham et al. 2013). Previous research has shown that white-tailed deer 1121 

expansion and establishment in Canada is largely attributed to climate and landscape change 1122 

(Dawe 2011, Munro et al. 2012, Dawe and Boutin 2016, Laurent et al. 2021, Dickie et al. 2024a, 1123 

Felton et al. 2024). However, few studies have investigated the relative importance of individual 1124 

landscape features (e.g., seismic lines, roads, cutblocks) on white-tailed deer distribution. 1125 

Management decisions to address and mitigate the effects of neonative white-tailed deer on 1126 

caribou and other species of concern requires a robust understanding of the direct and indirect 1127 

impacts that individual disturbance features have on white-tailed deer. We aimed to disentangle 1128 

the effects of landscape change on white-tailed deer abundance and distribution in part of 1129 

Canada’s western boreal forest, the Athabasca oil sands, using multiple years of camera data and 1130 

Structural Equation Modeling (SEM). 1131 

The Athabasca oil sands is an area where Canada’s boreal forest is changing rapidly due 1132 

to extensive resource extraction. Energy development and exploration in the oil sands has created 1133 

landscapes without global or historical analogs (Pickell et al. 2015), to the detriment of some 1134 

species while benefitting others (Fisher and Burton 2018). Previous research shows coyotes 1135 

(Canis latrans) and grey wolves (Canis lupus) benefit from linear features which they can use as 1136 

movement corridors to increase predation opportunities (James and Stuart-Smith 2000b, Latham 1137 

et al. 2011b, Fisher and Burton 2018, Dickie et al. 2020a). These features simultaneously 1138 

disadvantage prey species like moose (Alces alces) and caribou (James and Stuart-Smith 2000b, 1139 

Fisher and Burton 2018). Thus, the oil sands represent an ideal system to investigate specific 1140 
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drivers of neonative white-tailed deer distribution and the potential consequences of their 1141 

expansion into boreal Canada.  1142 

Structural equation models (SEMs) are used to test hypothesized causal relations between 1143 

multiple predictor and response variables by evaluating multiple structured equations in a single 1144 

causal network (Pearl 2000, Karimi and Meyer 2014), and are particularly useful for quantifying 1145 

indirect effects as variables can serve as both predictors and responses in the model framework 1146 

(Lefcheck 2016). SEMs also provide information on the relative importance of variables with 1147 

standardized coefficient estimates and the total (direct and indirect) effect of individual variables. 1148 

Current approaches for conducting SEMs, such as piecewise SEM, are highly adaptable and 1149 

allow for simultaneous implementation of non-normal distributions, random effects, and 1150 

different correlation structures (Lefcheck 2016). Thus, SEMs work well to address complex 1151 

ecological questions where underlying causation is of interest and informed by pre-existing 1152 

knowledge of the system.  1153 

 1154 

Methods 1155 

Camera sampling design 1156 

This study was part of the joint Canada-Alberta Oil Sands Monitoring program (Roberts 1157 

et al. 2022) and the design follows the terrestrial Biological Monitoring Program’s before-after-1158 

dose-response (BADR) design (Bayne et al. 2021a). We employed a constrained stratified 1159 

sampling design whereby the area was divided into six 1000-2000 km2 landscape units (LUs) 1160 

according to degree of development and each LU was further classified as either upland (>50% 1161 

upland deciduous forest) or lowland (>50% wet coniferous forest) based on the dominant forest 1162 

type. Within each LU, we divided the area into 2 km² hexagonal grid cells using ArcGIS 1163 

(Version 10.3; ESRI 2014), ensuring that the cells were located within 100 m of accessible roads 1164 

or trails. We then randomly selected 40-50 cells from within each LU. One remote infrared 1165 

wildlife camera (Reconyx PC900 Hyperfire™, Holmen, WI, USA) was deployed within each 1166 

selected cell. To maximize detections. And reduce false absences, cameras were placed along 1167 

wildlife trails (MacKenzie and Royle 2005)and positioned towards a bait tree which we applied a 1168 

scent lure to (O’Gorman’s™ Long Distance Call, O’Gorman’s MT) (Stewart et al. 2019b). 1169 

Camera deployment locations were at least 100 m from active human-use roads and trails and at 1170 

least 1 km from other camera locations in adjacent cells. Cameras were deployed from 2021 to 1171 
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2023 in each of the six LUs and were monitored for approximately 12 months (two LUs from 1172 

2021-2022 and four LUs from 2022-2023), however, some monitoring periods were limited due 1173 

to logistical constraints. Images were identified to the lowest taxonomical classification by 1174 

trained reviewers using Timelapse Image Analyzer 2.0 (Greenberg et al. 2019a). 1175 

From the camera images we calculated the proportion of months white-tailed deer were 1176 

detected at each camera, controlling for camera failures by omitting months with fewer than 15 1177 

operational camera days. Monthly white-tailed deer occurrence was assumed to follow a 1178 

Bernoulli distribution, whereby each month was considered an independent trial where a species 1179 

was detected (1) or not detected (0) within a calendar month. We treated 0’s as true-absences and 1180 

not potential false-absences; a non-detection of a white-tailed deer on a wildlife trail, with lure, 1181 

in an entire month, can confidently be treated as a true absence. We also calculated the total 1182 

number of independent detections – defined as images of a species taken at least 30 min apart – 1183 

for six species expected to directly or indirectly influence white-tailed deer relative abundance 1184 

(moose, grey wolf, coyote, snowshoe hare, black bear, and lynx).  1185 

 1186 

Quantifying natural and anthropogenic landscape features around cameras 1187 

 We calculated the proportion of anthropogenic and natural landscape features within a 1188 

1500-meter buffer around each camera location as this radius was identified as the most 1189 

informative scale for white-tailed deer in our study are from previous research (Dyck et al., in 1190 

prep). Anthropogenic disturbance features were derived from the Alberta Biodiversity 1191 

Monitoring Institute’s (ABMI) Wall-to-Wall Human Footprint Inventory, Enhanced for Oil 1192 

Sands Monitoring Region (Alberta Biodiversity Monitoring 2021) and ecologically similar 1193 

variables were grouped together (Table S1). Natural landscape features from the ABMI Wall-to-1194 

wall Land Cover Map 2010 Version 1.0 (Alberta Biodiversity Monitoring 2010). We assessed 1195 

multicollinearity among our variables with Pearson’s correlation tests and variables with a 1196 

correlation coefficient (r) greater than 0.6 were not included in the same structured equation 1197 

(Zuur et al. 2010b).  1198 

Model development 1199 

To evaluate the relative contributions of different landscape features on the spatial 1200 

distribution and abundance of white-tailed deer in the oil sands, we used piecewise SEMs. 1201 

Analysis was conducted in program R version 4.2.1 (R Core Team 2022) using the ‘piecewise’ 1202 
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package (Lefcheck 2016). Each individual structured equation within our analysis was fit as a 1203 

generalize linear mixed model (GLMM), with LU as a random effect, using package lme4 (Bates 1204 

et al. 2015). We modeled white-tailed deer monthly occurrence as an endogenous variable 1205 

(response variable influenced by other covariates in the model) and landscape covariates as 1206 

exogenous variables (independent variables not influenced by other covariates in the model) 1207 

following the formula outlined in equation 1. 1208 

Equation 1: 1209 

𝜂!" = 𝛽# + 𝐵$𝑋$!" + 𝛽%𝑋%!" +…𝛽&𝑋-!" + 𝐿𝑈" 1210 

logJl!"L = 	𝜂!" 		 1211 

𝑀𝑎𝑚𝑚𝑎𝑙	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠!"~	Poisson(l!") 1212 

𝐿𝑈"~	Gaussian(0, 𝜎%) 1213 

Where η is the linear predictor, β0 is the intercept, βn*Xn is a covariate of interest. White-tailed 1214 

deer occurrence is represented the ith observation at LUj, where LU is a random intercept with jth 1215 

level j= individual landscape unit. 1216 

 1217 

 Detections of other mammal species were modeled as both endogenous and exogenous 1218 

variables (Figure 2) whereby they could represent a covariate Xn of interest as in equation 1 or as 1219 

a response variable following a Poisson distribution as in equation 2. 1220 

Equation 2: 1221 

𝜂!" = 𝛽# + 𝐵$𝑋$!" + 𝛽%𝑋%!" +…𝛽&𝑋-!" + 𝐿𝑈" 1222 

logitJ𝜃!"L = 	𝜂!" 		 1223 

𝑀𝑎𝑚𝑚𝑎𝑙	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠~	Poisson(𝜃!") 1224 

𝐿𝑈"~	Gaussian(0, 𝜎%) 1225 

Using this framework, we developed an SEM that represented a priori hypothesized causal 1226 

pathways among species and between species and landscape variables, based on previous 1227 

research (Figure 2). We evaluated our hypothesized models’ fit using Fisher’s C statistic. The 1228 

Fisher’s C statistic tests the fit of the given model to the data and is compared to a chi-square 1229 

distribution whereby a non-significant chi-square (p > 0.05) means that there is weak support for 1230 

the sum of the conditional independence claims, and thus indicates the hypothesized 1231 

relationships are consistent with the data (Lefcheck 2016).  1232 
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 1233 

Results and Future Directions 1234 

Our initial hypothesized model was a poor fit (C = 508.42, p = 0.00, df = 42), indicting 1235 

we need to reevaluate the causal paths in our path diagram. We can conduct tests of directed 1236 

separation, a function built into the ‘piecewiseSEM’ package to assess independence claims or 1237 

missing pathways among variables, to look for significant (p<0.05) independence claims to 1238 

optimize our model to the data (Lefcheck 2016, Stenegren et al. 2017). If an independence claim 1239 

is deemed biologically relevant and improves the model fit (i.e., lowers the Fisher’s C statistic), 1240 

we can include it in further iterations of our model and re-evaluate its fit. Once we have fit a 1241 

model with better explanatory power (non-significant Fisher’s C p-value) we can evaluate the 1242 

relative importance of individual variables on white-tailed deer by comparing the standardized 1243 

coefficient estimates.  1244 

 1245 

 1246 

 1247 
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Figure 1: Hypothesized path diagram for landscape and interspecific interactions influencing 1248 

white-tailed deer distribution and abundance in the oil sands, Alberta, Canada. Boxes represent 1249 

various covariates and response variables and arrows represent hypothesized causal pathways.  1250 
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8. EVALUATING MODEL SELECTION UNCERTAINTY IN THE CONTEXT OF THE 1352 

BEFORE-AFTER DOSE-RESPONSE DESIGN USING SIMULATION 1353 

 1354 
Andrew F. Barnas, Marissa Dyck, Jason Fisher 1355 

OSM SUMMARY 1356 

 The OSM TAC, SIKIC, and Oversight Committees are naturally always looking for efficiencies 1357 

to monitoring. One of the questions that has arisen around the TBM’s BADR design (Bayne et al. 2021b) 1358 

is, “Do we need to do all of this sampling?”. This question has in part driven the work being done on 1359 

baselines and triggers, and sensitivity and power analysis. Classic power analysis (Krebs 1989) is 1360 

designed for parametric statistics and is inappropriate for the information-theoretic approach (Burnham 1361 

and Anderson 2002a) that underpins all of our analyses. Nonetheless sampling size and extent certainly 1362 

are expected to influence the accuracy and precision of our model outcomes, and hence our conclusions. 1363 

Here we use a novel approach based on empirical models and simulations to demonstrate what is gained 1364 

through the multi-landscape BADR design and how reduced sampling markedly decreases confidence in 1365 

the model estimates and the subsequent conclusions. 1366 

Introduction 1367 

Anthropogenic landscape change is a leading cause of biodiversity loss (Butchart et al. 2010), and large 1368 

mammals are especially at risk (Johnson et al. 2017). Research has shown human disturbance can result in 1369 

behavioural shifts and altered species interactions (Gaynor et al. 2018, Frey et al. 2020, Boucher et al. 1370 

2022), which produce effects that can cascade throughout ecosystems. While much work is being done to 1371 

mitigate and restore effects of landscape change (Dickie et al. 2023), these problems are inherently 1372 

complicated due to the complexity of identifying specific drivers of mammalian responses (Barnas et al. 1373 

2024a, Dickie et al. 2024a, Dickie et al. 2024b). This complexity necessitates that conservation 1374 

practitioners rely on robust data collection and subsequent analyses on which to base intervention 1375 

decisions.  1376 
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Unfortunately, understanding mammal responses to these disturbances is difficult as ecological 1377 

processes can change across time and space (Levin 1992). Local environmental conditions, wildlife 1378 

community structures, and anthropogenic stressors drive changes in these ecological processes (Barnas et 1379 

al. 2024c), which causes difficulty in generalizing results and recommendations from one study location 1380 

to another. In some cases mammal populations can even respond to the same stressor in different ways in 1381 

different sampling regions (Fidino et al. 2021a), which further complicates this problem. Therefore, 1382 

providing generalizable conservation recommendations for specific species may be limited by constraints 1383 

on sampling abilities. 1384 

To address this problem, there are increasing calls for large-scale synthetic approaches to data 1385 

collection and analyses, especially with the use of remote camera traps for wildlife surveys (Steenweg et 1386 

al. 2017a, Kays et al. 2022). These tools are beneficial in that surveys are readily standardized, can easily 1387 

provide spatial and temporal replication (Burton et al. 2015b), and provide insights on many aspects of 1388 

wildlife biology including behaviour (Barnas et al. 2022a), population trends (Twining et al. 2024), and 1389 

demographic information (Goward 2024). Further, by aggregating data across study locations, camera 1390 

trap surveys should provide an avenue to identify generalizable patterns to better inform conservation 1391 

practices across broad regions or provide location-specific intervention requirements (Barnas et al. 1392 

2024c).  1393 

While these collaborative efforts are increasing in popularity, attention needs to be paid to the 1394 

analytical approaches that are used with these data. A common modeling approach with camera trap data 1395 

is to use model selection (Tredennick et al. 2021), where the goal is to identify the best predictive model 1396 

out of a set of proposed candidate models (Bayne et al. 2016, Gaston et al. 2024). However, uncertainty in 1397 

identifying the “best” model through different analytical choices can mislead researchers directing 1398 

conservation actions and contribute to the replicability crisis in the sciences (Gould et al. 2023, Yates et 1399 

al. 2023). Overfitting and sampling variance have been shown to induce uncertainty in model selection 1400 

results (Arnold 2010, Preacher and Merkle 2012, Yates et al. 2023), and this is potentially problematic for 1401 

the integration of datasets across multiple landscapes in assessing generalized mammal responses across 1402 
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broad regions. Therefore, assessing the performance of model selection results should be emphasized in 1403 

synthetic approaches, as this provides insight into the relative confidence of conclusions from a given 1404 

study design and subsequent inferences.  1405 

The goals of this manuscript are to evaluate the effects of sampling variance on model uncertainty 1406 

and resulting inferences for large mammal responses to anthropogenic oil sands features. To do this we 1407 

use empirical data from the ongoing Oil Sands Monitoring program to construct models of wildlife 1408 

occurrence in relation to anthropogenic stressors across multiple landscapes. We then simulate data from 1409 

these models to evaluate the impact of sampling variance (i.e. effort) across landscapes and evaluate the 1410 

effect of reducing or increasing sampling effort across landscapes on biological inferences.   1411 

Methods 1412 

Empirical Data Collection and Study Areas 1413 

The ongoing Oil Sands Monitoring program (Roberts et al. 2022) takes place in north-eastern Alberta, 1414 

Canada and is centered on a Before-After-Dose-Response design (Bayne et al. 2021b). The program is 1415 

designed to evaluate impacts of oil sands development on the western boreal ecosystem, and the terrestrial 1416 

mammal monitoring component of this program relies on camera trap surveys of large mammal 1417 

occurrence. Briefly, 429 cameras across 10 distinct landscapes were selected throughout the region, 1418 

providing a gradient of landscape disturbance and habitat types. Each landscape was partitioned into grid 1419 

cells and cells were selected for placement of a single remote camera trap (Reconyx Hyperfire 2, Holmen, 1420 

Wisconsin, USA). Cameras were programmed to collect images when movement was detected, as well as 1421 

a single timelapse photo each day to verify that cameras remained operational throughout the year.  1422 

Empirical Model Construction 1423 

We chose to construct models using two species as case studies, coyote (Canis latrans) and moose (Alces 1424 

alces). We chose these species due to their differing life history characteristics and hypothesized 1425 

contrasting responses, whereby coyotes are small-bodied and known to be anthrophilic towards linear 1426 

features such as roads, while moose are large-bodied and known to prioritize early seral forage polygonal 1427 

features and avoid active anthropogenic disturbance such as roads (Ethier et al. 2024b) .  1428 



134 
 

For each camera site, we calculated a proportional binomial response variable of monthly 1429 

occurrence (1/0 for presence or absence) examining whether each species was detected within a calendar 1430 

month (Figure 1). To minimize false negatives, we only considered cameras which contained >15 days of 1431 

camera operability within the month. For explanatory variables, we delineated a 1000m radius buffer 1432 

around each camera site location and used the Alberta Biodiversity Monitoring Institute’s Human Feature 1433 

Index and the Wall-to-Wall Land Cover Map (ABMI 2018) to extract the proportion landscape composed 1434 

of broadleaf forest, mixed forest, shrubs, roads, and industrial features (Figure 2). We chose these features 1435 

due to their differential hypothesized effects on each case study species (i.e. hypothesized negative effect 1436 

of roads on moose but positive effect on coyotes). However, we remind the reader we are predominately 1437 

interested in the change in estimated effect for each feature during simulation exercises, rather than 1438 

constructing a complete causal model of occurrence for each species. We tested for and found no 1439 

statistically significant Pearson’s correlation coefficients between any explanatory variables. 1440 

  1441 
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 1442 

 1443 

Figure 1. Naïve monthly occurrence of A) coyote and B) moose, calculated as the number of 1444 
calendar months present divided by the number of months absent on camera traps (ntotal = 429) 1445 
within each camera landscape unit (n = 10). Note the number of camera traps varied within each 1446 
landscape unit. 1447 
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 1448 

 1449 
Figure 2. The proportion of landscape within a 1000m radius circular buffer around each camera site (n = 429) composed by A) broadleaf 1450 
forest, B) shrubs, C) mixed forest, D) road features, and E) industrial features (e.g. mines, borrow pits). 1451 
 1452 
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For each species, we constructed a candidate set of generalized linear mixed models based on the fully 1453 

saturated model provided in Equation 1. We assumed a Bernoulli distribution for each respective response 1454 

variable represented as the ith observation at LU j, where LU is a random intercept for Landscape Unit 1455 

with the jth level representing an individual landscape unit. We created a candidate set of models using the 1456 

MuMin package’s “dredge” function, to construct a model for every additive combination of fixed effects, 1457 

keeping the random effect constant in all models. We also included a null model which only included the 1458 

intercept and random effect. All proportional landscape variables were scaled prior to model fitting to 1459 

facilitate comparisons between effects sizes. All models were fit with maximum likelihood and ranked 1460 

based on AICc.  1461 

Equation 1: 1462 

𝜂!" = 𝛽# + 𝐵$𝐵𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓!" + 𝛽%𝑀𝑖𝑥𝑒𝑑!" + 𝛽&𝑆ℎ𝑟𝑢𝑏𝑠!" + 𝛽'𝑅𝑜𝑎𝑑𝑠!" + 𝛽(𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙!" + 𝐿𝑈" 1463 

logit@𝜃!"B = 	𝜂!" 		 1464 

𝑀𝑜𝑛𝑡ℎ𝑙𝑦	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒!"~	Bernoulli(𝜃!") 1465 

𝐿𝑈"~	Gaussian(0, 𝜎%) 1466 

Model Simulations 1467 

Following model selection from the candidate set of empirical models for each species, we identified the 1468 

best supported model and simulated new datasets based on parameter estimates from the top model. For 1469 

simplicity we only considered the single top supported model, recognizing that other models may be 1470 

competitive (i.e. within ∆2 AICc). However, we are primarily interested in whether simulated datasets 1471 

from these top models will recover the main top model during repeat model selection, regardless of the 1472 

empirical uncertainty in the top model. For each species, we simulated the predicted Bernoulli response 1473 

for number of months present and absent for a total of 12 months based on a Monte Carlo Simulation 1474 

using the top model’s estimated parameters. For each observation, we drew a simulated coefficient 1475 

estimate based on a random normal draw parameterized by the estimated coefficient mean and standard 1476 

deviation. We drew a single random effect value for each landscape unit based on the empirical random 1477 
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effect estimate. For each observation we also included a small random observer error effect drawn from a 1478 

random normal distribution with a mean of zero and standard deviation of 0.05. We simulated fixed 1479 

effects from a random uniform distribution based off the empirical minimum and maximum values for 1480 

each variable.  1481 

The best supported empirical model for coyote was the model containing broadleaf, shrubs, 1482 

industrial and roads (Table 1), but for moose was the model containing only broadleaf and industrial 1483 

(Table 2). In both these cases, not all the variables were present in the top models and mixed forest was 1484 

not present in either. Therefore, to provide a complete dataset and allow construction of the full candidate 1485 

model set, we simulated data for missing variables based on a random normal draw with a mean of zero 1486 

and standard deviation of 0.25. In doing so, we assumed a small, yet non-zero effect for each of the 1487 

variables not present in the empirical top model.   1488 
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Table 1 Candidate models examining landscape features on monthly coyote presence/absence.  1489 
Model df LogLik AICc ∆AICc Weight 

broadleaf + industrial + roads + shrubs 6 -989.6 1991.3 0 0.48 
broadleaf + industrial + mixed + roads + shrubs 7 -989.2 1992.8 1.47 0.23 
industrial + roads + shrubs 5 -991.7 1993.5 2.18 0.16 
industrial + mixed + roads + shrubs 6 -991.1 1994.3 3.04 0.11 
industrial + mixed + roads 5 -995.0 2000.2 8.88 0.01 
industrial + roads 4 -996.2 2000.4 9.15 0 
broadleaf + industrial + roads 5 -995.4 2001.0 9.71 0 
broadleaf + industrial + mixed + roads 6 -994.5 2001.1 9.84 0 
industrial + shrubs 4 -1005.2 2018.5 27.15 0 
broadleaf + industrial + shrubs 5 -1004.4 2018.9 27.65 0 
industrial + mixed + shrubs 5 -1004.5 2019.1 27.84 0 
broadleaf + industrial + mixed + shrubs 6 -1003.9 2020.0 28.74 0 
broadleaf + roads + shrubs 5 -1005.0 2020.2 28.93 0 
industrial + mixed 4 -1006.4 2020.9 29.62 0 
industrial 3 -1007.5 2021.0 29.72 0 
broadleaf + mixed + roads + shrubs 6 -1004.8 2021.8 30.53 0 
broadleaf + industrial 4 -1007.2 2022.5 31.25 0 
broadleaf + industrial + mixed 5 -1006.3 2022.7 31.38 0 
roads + shrubs 4 -1008.5 2025.1 33.78 0 
mixed + roads + shrubs 5 -1007.9 2026.0 34.66 0 
broadleaf + roads 4 -1013.4 2034.8 43.51 0 
broadleaf + mixed + roads 5 -1012.4 2034.9 43.58 0 
mixed + roads 4 -1013.5 2035.1 43.77 0 
roads 3 -1014.8 2035.6 44.27 0 
broadleaf + shrubs 4 -1036.4 2080.9 89.65 0 
shrubs 3 -1037.8 2081.7 90.42 0 
broadleaf + mixed + shrubs 5 -1036.0 2082.1 90.75 0 
mixed + shrubs 4 -1037.1 2082.3 90.95 0 
mixed 3 -1039.6 2085.2 93.88 0 
null 2 -1040.8 2085.6 94.28 0 
broadleaf + mixed 4 -1039.2 2086.4 95.12 0 
broadleaf 3 -1040.2 2086.4 95.15 0 

1490 
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Table 2 Candidate models examining landscape features on monthly coyote presence/absence.  1491 
Model df LogLik AICc ∆AICc Weight 
broadleaf + industrial 4 -688.4 1384.9 0 0.18 
broadleaf + industrial + shrubs 5 -687.4 1384.9 0.05 0.18 
broadleaf + industrial + mixed + shrubs 6 -686.7 1385.7 0.77 0.12 
broadleaf + industrial + mixed 5 -687.9 1385.9 1.01 0.11 
broadleaf + industrial + roads 5 -688.1 1386.3 1.44 0.09 
broadleaf + industrial + roads + shrubs 6 -687.3 1386.8 1.89 0.07 
broadleaf + industrial + mixed + roads 6 -687.6 1387.3 2.45 0.05 
broadleaf + industrial + mixed + roads + shrubs 7 -686.6 1387.5 2.64 0.05 
broadleaf + roads 4 -690.2 1388.5 3.65 0.03 
broadleaf 3 -691.4 1388.8 3.92 0.03 
broadleaf + shrubs 4 -690.6 1389.2 4.36 0.02 
broadleaf + mixed + roads 5 -689.7 1389.5 4.66 0.02 
broadleaf + roads + shrubs 5 -689.7 1389.6 4.74 0.02 
broadleaf + mixed 4 -690.9 1389.9 4.97 0.02 
broadleaf + mixed + shrubs 5 -690.0 1390.0 5.16 0.01 
broadleaf + mixed + roads + shrubs 6 -689.1 1390.4 5.56 0.01 
industrial + roads 4 -701.8 1411.8 26.91 0 
industrial 3 -703.0 1412.1 27.18 0 
roads 3 -703.2 1412.4 27.49 0 
industrial + mixed + roads 5 -701.5 1413.2 28.34 0 
industrial + shrubs 4 -702.7 1413.5 28.61 0 
industrial + mixed 4 -702.7 1413.5 28.65 0 
industrial + roads + shrubs 5 -701.7 1413.6 28.73 0 
mixed + roads 4 -702.9 1413.8 28.91 0 
roads + shrubs 4 -703.1 1414.3 29.45 0 
industrial + mixed + shrubs 5 -702.3 1414.8 29.94 0 
null 2 -705.5 1415.0 30.06 0 
industrial + mixed + roads + shrubs 6 -701.4 1415.0 30.09 0 
mixed + roads + shrubs 5 -702.8 1415.7 30.83 0 
mixed 3 -705.2 1416.4 31.53 0 
shrubs 3 -705.2 1416.6 31.66 0 
mixed + shrubs 4 -704.9 1417.9 33.03 0 

1492 
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We simulated 100 datasets containing three, six, and twelve landscape units (random effect levels), with 1493 

40 camera sites each (n = 120, 240, and 480, respectively), and for each dataset we reconstructed the full 1494 

candidate set of models as described above. For each dataset and landscape unit sample size, we identified 1495 

the top model, and calculated the proportion of simulations where each model was identified as top. Next, 1496 

from the “true” model in each simulation we extracted the fixed and random effect estimates and 1497 

visualized their distribution with varying landscape unit number compared to the known empirical value. 1498 

All data manipulation was done in R Studio v4.4.1 (R Core Team 2017) using packages glmmTMB for 1499 

model construction (Magnusson et al. 2017), dplyr for general data manipulation (Wickham et al. 2015), 1500 

MuMin for model selection (Barton 2009), and ggplot2 for data visualization (Wickham 2016). 1501 

Results 1502 

Model selection uncertainty 1503 

The correct top model for coyote was identified in increasing proportion of simulations with 1504 

increasing number of landscape units: 0.17 for three arrays, 0.42 for six arrays, and 0.51 for twelve arrays 1505 

(Figure 3). For moose, the correct top model was identified as top in roughly similar proportion of 1506 

simulations: 0.14 for three arrays, 0.16 for six arrays, and 0.10 for twelve arrays (Figure 4). However, for 1507 

both species uncertainty in model selection decreased with increasing array number. The number of 1508 

models selected as top within simulations for coyote was 11 for three arrays, 8 for six arrays, and six for 1509 

twelve arrays, while for moose was 23 for three arrays, 13 for six arrays, and eight for twelve arrays.  1510 

Given that the candidate models were nested in nature, it is also useful to consider the proportion 1511 

of times the top model contained the fixed effects of interest. For coyotes, models containing all four 1512 

terms for broadleaf, industrial, mixed, and shrubs were selected correctly in 30% of cases for three arrays, 1513 

55% for six arrays, and 74% for twelve arrays. For moose, models containing the two terms broadleaf and 1514 

industrial were selected in 64% of cases for three arrays, 94% for six arrays, and 100% for twelve arrays. 1515 
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 1516 

 1517 
Figure 3. Proportion of simulations (n = 100) for coyotes in which each model was identified as top 1518 
based on AICc. Data simulated based on the empirically identified top model of broadleaf + 1519 
industrial + roads + shrubs, with varying number of levels for the array random effect, A) three 1520 
landscape units, B) six landscape units, and C) twelve landscape units.  1521 
 1522 
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 1523 
Figure 4. Proportion of simulations (n = 100) for moose in which each model was identified as top 1524 
based on AICc. Data simulated based on the empirically identified top model of broadleaf + 1525 
industrial, with varying number of levels for the array random effect, A) three landscape units, B) 1526 
six landscape units, and C) twelve landscape units.  1527 
 1528 
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Model Parameter Estimate Uncertainty 1529 

Increasing the number of landscapes led to more precise parameter estimates for both coyote (Figure 5) 1530 

and moose (Figure 6). In some cases, using only three arrays led to both negative and positive estimates in 1531 

coyote for broadleaf (Figure 5A) and shrubs (Figure 5D), but increasing the number of arrays removed 1532 

this negative bias (broadleaf: Figure5 F, K, shrubs Figure 5I, N). For all models we observed a decrease in 1533 

parameter estimate variance with increasing number of landscapes (Table 3). 1534 

Table 3 Variance in fixed and random parameter estimates from the simulated models for moose 1535 
and coyote 1536 

Model 
Species 

Effect 
Type Parameter 3 Landscapes 6 Landscapes 12 Landscapes 

Moose 
Fixed Broadleaf 0.015 0.007 0.004 
Fixed Industrial 0.004 0.002 0.0008 

Random Landscape Unit 0.158 0.101 0.038 

Coyote 

Fixed Broadleaf 0.006 0.004 0.002 
Fixed Industrial 0.001 0.0006 0.0004 
Fixed Shrubs 0.006 0.002 0.002 
Fixed Roads 0.006 0.002 0.0008 

Random Landscape Unit 0.09 0.04 0.01 
 1537 
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 1538 
 1539 

 1540 
Figure 5 Coyote model parameter estimates from simulations (n = 100) for broadleaf (A, B, C), 1541 
industrial (D, E, F), roads (G, H, I), shrubs (J, K, L), and the landscape unit random effect (M, N, 1542 
O). Dashed line in each plot represents the mean estimate from the original empirical top model.   1543 
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 1544 
 1545 

 1546 
Figure 6 Moose model parameter estimates from simulations (n = 100) for broadleaf (A, B, C) , 1547 
industrial (D, E, F), and the landscape unit random effect (G, H, I). Dashed line in each plot 1548 
represents the mean estimate from the original empirical top mode1549 
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Discussion 

As the popularity of camera traps grows globally (Fisher 2025) the pooling of data across research 

projects has led to macroecological insights never before possible (Rich et al. 2017, Burton et al. 2024, 

Devarajan et al. 2025). Expanding the geographic and ecological extent of sampling, as well as sample 

size, by networking camera arrays has obvious value. However, less well known is the impact on 

modelling outcomes. We demonstrate the impact of expanding sampling to multiple camera arrays on the 

outcomes of a commonly used analytical framework, as well as the importance of examining model 

selection uncertainty with simulation. There were clear reductions in model selection uncertainty by 

increasing the number of camera arrays (“landscape units”) sampled within the oil sands monitoring 

BADR design. For both moose and coyotes, we show reduced uncertainty in model selection results, and 

higher precision in estimates for effects of landscape features on monthly occurrence. Importantly, the 

reduction in uncertainty was not purely a function of sampling variance, but also appeared to be 

influenced by model complexity. The more complex coyote model, which included four fixed effects 

(broadleaf, shrubs, industrial, and roads) was selected as the top model even with only three arrays, which 

likely reflected overfitting where more complex models can spuriously outcompete reduced models in 

small datasets. By increasing landscape units in the sample, selecting models with the parameters of 

interest increased. For moose with a simpler top model (two fixed effects: broadleaf and industrial), the 

true top model was identified less frequently. However, models containing these key parameters were 

more consistently recovered.  

Reducing sampling variance through increasing the number of landscape units had a clear effect 

of increasing precision of model parameter estimates. This was particularly important for coyotes, where 

estimates of the broadleaf and shrub parameters included both negative and positive effects with only 

three landscape units. These biases were reduced with increasing landscape units, which shows the danger 

of making broad inferences from a few landscapes. While parameter estimates from model selection 

approaches should be interpreted with caution (Arif and MacNeil 2022), biases in estimates make 

ecological inferences challenging or potentially nonsensical.    
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Given the ongoing conservation crisis and the need to properly allocate time and resources to 

ecological research that informs effective conservation decisions (Martínez‐Harms et al. 2024), these 

simulation results have practical implications for addressing uncertainty in ecological research. Clearly 

increasing sampling effort reduces uncertainty due to sampling variance and can help increase precision. 

However, this does not mean smaller scale studies should be overlooked, as landscape-specific insights 

from individual camera arrays provide valuable local insights (Ethier et al. 2024b, Gaston et al. 2024). 

These local results provide insights into specific biological relationships, which can then be tested or 

accounted for in larger synthetic analyses.  

One important caveat to this study is the assumption that the original top empirical model 

represents a valid data-generating structure. We incorporated missing terms for each species so as to not 

assume a true “zero” effect, recognizing that all candidate models are nothing more than reasonable 

approximations (Burnham and Anderson 2002b). Concordantly, when the empirical top model already 

contains uncertainty (e.g. moose, see Table 2), it may be more important to validate model selection and 

incorporate additional sampling units. However, when initial results are more certain (e.g. coyote, see 

Table 1), model selection uncertainty will be reduced. While no single dataset will completely eliminate 

uncertainty, the clear benefits in reducing model selection uncertainty and improved parameter precision 

with increasing landscape unit number highlight the value of larger, more comprehensive sampling 

approaches in ecological research. 
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