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1. MAIN MESSAGES FOR OIL SANDS MONITORING

The ACME Lab’s Oil Sands Monitoring (OSM) Mammal Monitoring Program was
funded as requested for 2024-2025. We delivered on field monitoring for four Landscape Units
under the BADR design. Here we report the summary statistics from that program. We also use
OSM-BADR data to answer core questions of the OSM program, as well as questions posed last
year by the Terrestrial Biological Monitoring’s (TBM) Technical Advisory Committee (TAC)
and Science and Indigenous Knowledge Integration Committee (SIKIC), highlighted in the
2024-2025 TBM Workplan.

Core Questions

1. Has the abundance of wildlife species changed? The answer is yes, as evidenced by all
of the papers reviewed in Roberts et al. (2022) and the papers on boreal mammal
communities(Fisher and Burton 2018, Burgar et al. 2019, Tattersall et al. 2020a, b, Beirne et al.
2021a, Fisher et al. 2021a, Fisher et al. 2021c, Wittische et al. 2021b, Fisher and Ladle 2022b,
Sun et al. 2022, Boczulak et al. 2023, Barnas et al. 2024c¢) we have published in the past years of
the program.. The outcomes of this year’s analyses (below) continue to corroborate these
conclusions: the abundance of wildlife species has changed, and OS activities are a driver of that
change. In the 2024-5 report, we dive into three key mammal species identified by scientists and
Indigenous communities as important indicators of boreal communities: white-tailed deer, black
bears, and coyotes.

2. To what extent is that change driven by oil sands activities? That same research shows
that the effect sizes (the strength of a stressor-response relationship) of some OS features can be
greater than roads or forest harvesting, depending on the species examined, and the ecological
context considered (Fisher et al. 2021c, Wittische et al. 2021b, Aubertin-Young 2022, Darlington
et al. 2022, Fisher and Ladle 2022b, Roberts et al. 2022, Boczulak et al. 2023, Fuller et al. 2023,
Barnas et al. 2024c). Seismic lines are important but so are other linear and polygonal features.
The 2024-2025 analysis examines the spatial scales at which features have the greatest impact on
different species, and what zone of influence each of these features has on boreal mammal
species. This work is covered in Chapter 4, with a separate complementary analysis in the

ABMI-UVIC joint deliverable.



3. What are the cumulative effects of oil sands pressures on wildlife? We have shown that
anthropogenic features affect mammal species (Fisher et al. 2020, Fisher et al. 2021¢, Wittische
et al. 2021b, Boucher et al. 2022, Darlington et al. 2022, Fisher and Ladle 2022b, Fuller et al.
2022) — OS features play a demonstrable role, but are not alone in this. Multiple forms of
disturbance, including forest harvest and transportation, alter boreal mammal communities.
Parsing apart the relative contributions of various features to causing boreal mammal community

change is the goal of ongoing analyses and is addressed in all chapters.

2024-2025 Questions

In the 2024 Workplan, we outlined these knowledge gaps:

1. How do mammal responses to OS activities change over time?

The answer to this question is the key target of the BADR’s 3-year rotation design. The first
series of data were collected in 2021 and in the 2024 year we started to collect the first re-
samples of the original Landscape Units.

2. How do mammals’ response to OS activities change with context across the OSR; that is,
do species respond negatively to OS activities under some conditions and positively
under others? How do mammal densities change in response to OS activities, within an
LU and between LUs?

In this year we built toward answering this question by sampling the last four remaining
Landscape Units identified in the BADR design. These data were collected in fall 2024, image-
analyzed in winter 2024, and data-analyzed in spring 2025. This analysis a multi-stage process
that will push into the 2025-2026 year. The first step in this analysis is to determine the spatial
scale at which OS and other industrial features affect each boreal mammal species.
Understanding this scale dependence is key to further analysis and to informing landscape
planning and restoration. This question is addressed in the several chapters herein.

3. Which OS features most strongly affect indicator species’ relative abundance and
distribution?

To bridge this gap, we utilise structural equation modelling to identify which OS stressors
significantly contribute to changes in mammal distribution, and how these compare to
cumulative effects stressors. We examine linkages identified in the TBM conceptual model and

estimate the effect sizes for these different linkages, to show which features (and modelled



species-feature processes) have the greatest effect on a key species indicator: white-tailed deer
(Chapter 7). We outline an approach that we are planning to pursue in 2025-2026 that we suspect

will yield new insights into the relative effects of different OS features on mammal species.

2. 2024-2025 MAMMAL MONITORING: LANDSCAPE UNIT CAMERA
DEPLOYMENT

Overview

Mammal monitoring at the scale of landscape units (LUs) followed the OSM Terrestrial
Biological Monitoring (TBM)’s Before-After Dose-Response (BADR) design (Bayne et al.
2021b). In 2024-2025 we sampled four LU’s identified using the BADR design (Figure 1): LU
09, 14, 16 and 22. We also deployed resampling of the first LU’s first sampled in 2021 — LUs 02
and 03 — as well as deployed new sampling for LUs 04 and 08, which had not been supported in
the funding decision of 2021 (Figure 1).

Sampling Design

In addition to the JEM sites selected by the TBM team and embedded in each LU, 40-50
cameras were deployed across each LU in a stratified random design to minimise correlation
among environmental covariates and spread sampling effort across the range of natural
heterogeneity. The landscape was stratified into dominant (> 50%) forest classes: conifer forest,
deciduous forest, and mixedwood forest, using similar criteria as for JEM sites. The intent is to
distribute the cameras somewhat evenly among these strata, to “control” for natural variability
while examining the role of industrial features on mammal communities.

In ArcGIS the landscape was overlain by a hexagonal grid of 2-km? cells. This cell size
allows us to space cameras sufficiently far apart to allow some degree of independence (Diniz-
Filho et al. 2003, Hawkins et al. 2007, Gilbert et al. 2020) for species-habitat models, typically
conducted in a linear regression framework (Fisher and Burton 2018, 2020, Fisher et al. 2020). It
also meets the requirements of density estimation models, which require at least 2-3 cameras be
deployed within an individual’s home range size, such that it could be detected on multiple

cameras (Royle et al. 2014, Sun et al. 2014, Burgar et al. 2018, Burgar et al. 2019).
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Figure 1. The OSM TBM’s BADR design showing the 12 LUs selected for sampling,

and the years sampled.



Using data from a review of mammal home ranges sizes (Holling 1992) and analyses of
caribou (Dalerum et al. 2007) and white-tailed deer (Fisher et al. 2016) from the region, we
determined the smallest home-range size was for white-tailed deer and that a 2-km? cell size
would accommodate model requirements.

Where possible we constrained the resulting hexagonal grid to cells within 100-m of a
vehicle-accessible road or trail, as determined by ABMI human footprint inventory. This
logistical necessity reduced expensive helicopter time, although in the low-disturbance landscape
helicopter access was required for access to all sites. We then randomly selected 30 cells from
each of the three strata. When we could not find 30 cells within each stratum, we relaxed the
definition of “upland” or “lowland” from > 50% of the cell to > 25% of the cell, and then
randomly selected sites to yield a complete set of candidate sites.

In the field, the deployment team visited each accessible cell and identified active
wildlife trails suitable for deployment within that cell (ensuring that cameras within adjacent
cells were the minimum 1-km apart); this increases probability of detection given animal
presence within the cell (MacKenzie et al. 2002, MacKenzie and Royle 2005, MacKenzie et al.
2017a), as data density is important to make statistical models function (Burgar et al. 2019). No
bias is expected(Stewart et al. 2019a) as game trails represent where wildlife use these complex
landscapes; in fact not using game trails biases estimates downward, because one is sampling
places that animals do not use, or use very rarely. One Reconyx PC900 or Hyperfire Il camera
(Holmen, WI, USA) was deployed within the hex cell and secured to a tree using a Reconyx lock
box and a python cable lock. The statistical unit is thus the cell, not the site itself, and the cell is
the basis for modelling and inference. At a subset of sites, ABMI deployed an additional camera
directly at the cell centroid to represent a random paired site which will allow for improved inter-
operability of datasets for different density estimation methods(Nakashima et al. 2018,
Nakashima et al. 2020). This design was fully integrated with the JEM-site scale sampling. That
is, where a JEM site falls within a cell, the JEM site was used — there is no double-sampling.
This integrated approach is not only more cost-effective, but it also allows us to conduct cross-
scale comparisons key to the hierarchical BADR design. The final deployment spanned major

gradients of interest across the LUs (Figure 1).



Sampling began in 2021 where funding for two LU’s was approved, switching to four
LU’s per year as described in the full BADR implementation. The LU mammal monitoring data

now available are summarised in Figure 2.
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Figure 2. The timeline of camera deployments for the OSM TBM’s mammal monitoring. To
date 10 LU’s have been fully sampled, two are being re-sampled, and two are being sampled for

the first time due to being declined for monitoring in 2021.



3. 2024-2025 MAMMAL MONITORING: LANDSCAPE UNIT DATASET SUMMARY

Monitoring Results to Date

Workplan approvals for this fiscal year were provided April 11, 2024. The AEP research
agreement with UVIC was signed July 2024. Camera collection and deployment occurred
September — October 2024. A one-year sample is required for most effective LU-scale mammal
monitoring, consistent with all our past camera-trapping research in the boreal forest(Fisher and
Burton 2018, Burgar et al. 2019, Fisher and Burton 2020, Fisher et al. 2020, Tattersall et al.
2020b, a, Fisher et al. 2021a, Fisher et al. 2021c, Wittische et al. 2021b, Fisher and Ladle 2022b,
Frey et al. 2022, Sun et al. 2022). We made the decision to collect cameras deployed in 2024 in
September 2025, so image classification of those cameras will occur at that time. Herein, we
provide an update of data collected Fall 2024 (deployed 2023).

LU09 Array (In-situ)

Coyote and white-tailed deer are two of the most abundant and widespread species in
LUO09. Coyote occupied 94% of sampling sites, and white-tailed deer 92%. Snowshoe hare
(70%) and red squirrel (92%) were also abundant and widespread, as were black bears (80%).
Furbearers’ marten and fisher were unusually widespread (56% each) although with very low
relative abundance. Moose, a key indicator for Indigenous communities, was almost absent from
this landscape (9 detections, 16% occupancy).

LU14 array (Low development)

Red squirrel (92%), black bear (82%), and snowshoe hare (73%) are the 3 most abundant
and widespread species in this LU. Unlike the in-situ array, moose are widespread (69%) and
abundant here. Lynx, fisher, wolves, and marten have intermediate occupancy and abundance.
Invasive white-tailed deer are not abundant (68 detections) nor as widespread as in the in-situ LU
(45%). Likewise, coyotes are not abundant (32) and not widespread (29% occupancy).

LU16 Array (Mine-Adjacent)

Coyote is the most widespread mammal in this LU (94% occupancy), but white-tailed
deer are less so, at 63% occupancy. Red squirrel black bear, and snowshoe hare have the highest
relative abundance and high occupancy (92, 86, 82%). Moose have intermediate relative
abundance but are widespread (73% occupancy). Furbearers’ lynx, marten, red fox, and fisher

have low relative abundance but higher occupancy than in-situ landscapes (71, 45, 39, 3%).
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LU22 Array (Pre-in-situ)

Black bear (90% occupancy), fisher (84% occupancy), snowshoe hare (76% occupancy),
and red squirrel (76%) are the most widespread mammal species with the highest relative
abundance in this pre-in-situ, relatively low-disturbance LU. Coyote is likewise widespread
(82%) but with half the relative abundance compared to the in-situ landscape (218 vs 518
independent detections). White-tailed deer are likewise widespread (74% occupancy) but with
9% the relative abundance than in the in-situ landscape (125 vs 1402 detections) and 1.8 times
higher relative abundance than the low-development landscape with (125 vs. 68 detections).
Notably, moose are not all widespread here (26% occupancy) and are not abundant (18

detections).

11



LU (in situ)

White-tailed deer

Snowshoe hare

1402

Coyote

Red squirrel

Black bear
Unknown (various)
Marten

Grey wolf

Lynx

Fisher

Caribou

Spruce grouse
Red fox

Human (various)
Ruffed grouse
Short-tailed weasel
Moose

Grey jay
Wolverine

Otter

Cougar

500 1000
Number of independent (30 min) detections

Coyote
White-tailed deer
Red squirrel

Black bear
Snowshoe hare
Marten

Fisher

Lynx

Grey wolf

Caribou

Spruce grouse
Red fox

Unknown (various)
Ruffed grouse
Short-tailed weasel
Moose

Grey jay
Wolverine

Human (various)
Otter

Cougar

0.00 0.25 0.50 0.75
Naive occupancy

12



Red squirrel

Black bear
Snowshoe hare
Unknown (various)
Moose

Lynx

Fisher

Marten

Grey wolf
White-tailed deer
Spruce grouse
Short-tailed weasel
Coyote

Ruffed grouse
Grey jay
Wolverine

Human (various)
Red fox

Caribou

Raven

Black bear

Red squirrel
Snowshoe hare
Moose

Lynx

Fisher

Grey wolf

Marten
White-tailed deer
Spruce grouse
Ruffed grouse
Coyote

Grey jay
Short-tailed weasel
Unknown (various)
Wolverine

Red fox

Caribou

Raven

Canada goose
Human (various)

LU14 (low development)

200 400
Number of independent (30 min) detections

600

0.92

0.00 . 0.50

Naive occupancy
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LU16 (mine)

Snowshoe hare
Red squirrel
Black bear
Coyote
White-tailed deer

Unknown (various)

Ruffed grouse
Red fox

Marten

Grey wolf

Fisher

Spruce grouse
Human (various)
Grey jay
Short-tailed weasel
Wolverine
Striped skunk

Caribou

1833

Coyote

Black bear

Red squirrel
Snowshoe hare
Moose

Lynx

White-tailed deer
Marten

Red fox

Fisher

Grey wolf

Spruce grouse
Ruffed grouse
Unknown (various)
Grey jay
Short-tailed weasel
Wolverine

Striped skunk
Caribou

Human (various)

500

1000
Number of independent (30 min) detections

1500

0.00

0.25

0.50
Naive occupancy

0.75
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LU22 (pre in situ)

Snowshoe hare
Red squirrel
Black bear
Coyote

Fisher
White-tailed deer
Unknown (various)
Marten

Lynx

Spruce grouse
Ruffed grouse
Grey wolf

Moose

Short-tailed weasel

200 400 600
Number of independent (30 min) detections

Black bear 0.9
Fisher

Coyote

Snowshoe hare

Red squirrel

White-tailed deer

Lynx

Marten

Ruffed grouse

Grey wolf

Moose

Spruce grouse

Unknown (various)

Short-tailed weasel

Wolverine

Red fox

Grey jay

0.00 0.25 0.50 0.75
Naive occupancy
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ACME Lab Public Data Portal

The ACME Lab’s data portal lists maps and metadata for OSM’s TBM Mammal

Monitoring Program for 2021-2024: (http://www.acmelab.ca/dataportal.html#Boreal).

This portal describes where and when monitoring has occurred. Here, data associated with

research is permanently archived with associated DOI’s. Each LU is linked as its own project,

and each project contains:

1.
2.

GIS shapefiles of the deployment sites.
Landcover covariates around each camera site, as derived from the ABMI’s Wall-to-Wall

Land Cover Inventory (https://abmi.ca/home/data-analytics/da-top/da-product-

overview/Data-Archive/Land-Cover.html).

Anthropogenic feature covariates around each camera site, as derived from the ABMI’s

Wall-to-Wall Human Footprint Inventory (https://abmi.ca/home/data-analytics/da-top/da-

product-overview/Human-Footprint-Products/HF-inventory.html).

Data extracted from camera images using TimeLapse Image Analyzer 2.55(Greenberg et
al. 2019b) in CSV format.
Dataframes for R statistical software(R Core Team 2024b) that merge all the associated

datasets and provide code for exploring the modelling the data.
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4. SELECTING SPATIAL SCALES FOR UNDERSTANDING SPECIES RESPONSES
TO ANTHROPOGENIC LANDSCAPE CHANGE WITH CAMERA TRAP DATA

Marissa A. Dyck, Rebecca M. Smith, Emerald Arthurs, Megan Braun, Shay Marks, Andrew F.

Barnas, Jason T. Fisher

OSM SUMMARY

A key question for understanding OS impacts and for managing OS landscapes, is “Does
the density of OS features close by, or aggregated in larger landscapes, affect a species’
occurrence within a landscape? ” Does a seismic line just affect the animals on that line, or do
the effects of multiple lines accrue as lines increase in density? The same question applies to all
anthropogenic features in the OSR. This question is the topic of the ABMI-UVIC joint
deliverable, in which we compare the results of JEM-site monitoring on- and near-features, to the
LU-scale monitoring which aggregates feature density. Here we dig even deeper into that
question by modeling the effects of industrial feature density on multiple mammal species across
20 scales. We find that there is no consistent scale that explains the response of mammals to OS
and other features, but that aggregate feature densities are critical to explaining outcomes for
mammal in these landscapes. We show that some species respond to local-scale densities
whereas others have much larger-scale responses, signalling population outcomes. This
information helps us understand #ow OS features affect mammals, to guide recommendations for

mitigation and better landscape management.

INTRODUCTION

Anthropogenic landscape change has drastically altered Earth’s ecosystems; more than
75% of ice-free land has undergone human-induced modification (Ellis and Ramankutty 2008).
This level of landscape change has profound effects on ecological systems, leading to numerous

conservation crisis including accelerated rates of species loss and global climate change (Dirzo et

al. 2014, Ceballos et al. 2015, Ceballos et al. 2017, Trenberth 2018). Energy development is one
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driving force of landscape change in the current Anthropocene Epoch, and results of energy
exploration and extraction activities create complex landscapes and systems. As energy
development activities continue, an overarching ecological unknown is to understand how
species respond to these novel disturbance environments. Disentangling the effects of landscape
change in these complex systems is challenging especially since species may respond to
disturbances in different ways depending on the landscape context (Fidino et al. 2021b, Barnas et
al. 2024c). Management decisions to address changes in complex human-altered systems
therefore not only require robust data but also replicated samples from which to draw reliable
inferences.

In turn, remote camera traps have become a widely used technique particularly for
studying wide-ranging terrestrial mammals (Trolliet et al. 2014). Remote camera traps allow for
investigation across large spatial scales and temporal extents (Burton et al. 2015a), are
minimally-invasive (Kelly et al. 2012, Meek et al. 2014), and facilitate synthetic approaches
between groups (Steenweg et al. 2017b, Cove et al. 2021). Data generated from camera trap
studies allow for species-specific inferences on behavior (Caravaggi et al. 2017, Barnas et al.
2022b), habitat use and density (Jacques et al. 2019, Dyck et al. 2022, Tosif et al. 2022, Ethier et
al. 2024a), and allow for estimating how these factors change with landscape change (Fisher and
Burton 2018).

Species occurrence data from camera traps are often used to examine relationships
between species and their environment, where occurrence is analyzed in relation to spatial
resource availability (Shurin et al. 2002, Wiewel et al. 2007). The theoretical basis for these
analyses stems from optimal foraging and risk-reward theories (Pyke 1984, Holbrook and

Schmitt 1988a), which assume that animals select habitat based on available resources and
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perceived risks. However, applying these concepts to camera trap data introduces challenges,
particularly in defining the spatial scale at which landscape features influence habitat selection.
Mammal responses to landscape features depends on the scale at which the features are measured
in relation to camera trap placement. For example (Figure 1), a camera placed in dense forest
directly adjacent to a forestry cutblock may provide abundant early forage for moose (4/ces
alces) and nearby escape cover (Johnson and Rea 2023). If we consider only this small spatial
scale, we may predict high relative moose abundance. However, when considering the larger
spatial extent around the camera site, high-density anthropogenic linear features will facilitate
predator incursion into the area, and we may predict lower relative moose abundance as a result.
This problem of scale is central to ecological inquiry (Levin 1992), and ecologists
recognized its existence as early as the 1930s (Urban 2014). The early theoretical groundwork
helped establish landscape ecology as a field (MacArthur and Levins 1964, Sarkar 1984, Wiens
1989, Allen and Hoekstra 1992) and many empirical studies have aimed to assess how species
respond to stressors at different scales and the relative roles of factors operating at each scale
(Turner 1989, Chave 2013, Lawler and Torgersen 2020). The knowledge that ecological
processes operate at different scales is now well established and critical to our understanding of
ecological systems (Levin 1992, Lawler and Torgersen 2020). Therefore, several theories have
emerged in the field of landscape ecology attempting to characterize predictable patterns of scale
to which species respond to their environment (Holland et al. 2004, Holland et al. 2005, Nams et
al. 2006, Fisher et al. 2011, Holland and Yang 2016). Holland et al. (2004) posited that there is a
characteristic scale at which a species interacts with its environment, while Wiens (1989) posited
that there may be domains of scale (a spatial range) where ecological patterns and processes are

consistent. Early work on beetles (Holland et al. 2004, Holland et al. 2005) and mammals (Nams
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et al. 2006, Fisher et al. 2011) suggested support for these characteristic scales, but the emerging
body of research suggests that best-supported scales are not predictable, but rather context-
specific (Stuber and Fontaine 2019). Investigating scale-dependence is important to understand
an identify how mammal-habitat relationships change across spatial scales to best inform
conservation practices.

One biogeoclimatic region where the problem of scale need be considered is the western
Cordillera of North America, where the western boreal forest is changing rapidly due to resource
extraction creating landscapes without global or historical analogs (Pickell et al. 2014, Pickell et
al. 2015, Pickell et al. 2016b). Mammal species respond to oil sands -generated landscape
features, and the cumulative effects of ancillary disturbances, in various ways (Fisher and Burton
2018, 2021, Wittische et al. 2021b, Fisher and Ladle 2022a, Roberts et al. 2022, Fuller et al.
2023). Linear features, such as seismic lines and roads, facilitate wolf (Canis lupus) travel
(Dickie et al. 2017) which then increases encounter and predation rates, affecting caribou
(Rangifer tarandus) and moose (McKenzie et al. 2012, Boucher et al. 2022). Concurrently,
polygonal anthropogenic features, such as cutblocks and well sites, provide early-seral forage
subsidy (Fisher and Burton 2018, Routh and Nielsen 2021, McKay and Finnegan 2022) for
herbivores, which then attracts carnivores, also altering predator-prey dynamics (Fisher and
Ladle 2022a). Forestry cutblocks attract large herbivores (Fisher and Wilkinson 2005), and the
role of well sites has recently been revealed as additional sources of early-seral forage for many
species, and an aggregator of prey for carnivores (Fisher et al. 2021b, Fuller et al. 2023). Clearly,
different disturbance features evoke variable responses from large mammals, but it is unknown
whether species interact with these features at some “characteristic” scale (Holland et al. 2004)

or if these scales are predictable.
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Here, we examined habitat relationships at multiple spatial scales for several boreal
mammal species. We used a multi-scale information-theoretic approach to understand the effect
of spatial scale on species responses to landscape features an area of heavy habitat disturbance,
the Athabasca oil sands. We used camera traps to quantify species’ relative abundance
(O'Connell et al. 2011, Fisher 2025), and then modelled each species against natural and
anthropogenic landscape variables across multiple spatial scales. We hypothesized (1) domains
of scale would emerge for each species, such that habitat measured at spatial scales of similar
sizes would perform comparably to explain a species’ relative abundance; (2) the best-supported
spatial scale would vary between the type of processes being measured (e.g., anthropogenic and
natural landscape features); (3) best-supported spatial scales would vary among species and not

be predictable (e.g., by body size or trophic level).

MATERIALS AND METHODS
Study area

Our study frame is the Western Sedimentary Basin (Porter et al. 1982), a vast portion of
the western Canadian boreal forest underlain by the world’s 3rd-largest petroleum deposits
(Figure 2) (Government of Alberta, 2023) including the Athabasca Oil Sands Regions (OSR),
which aggregate three independently managed oil sands areas (ABMI, 2014). Covering a total
area of 140,000 km?, the OSR is characterized by a mosaic of upland and lowland forests,
wetlands, and anthropogenic features resulting from natural resource extraction, particularly
energy development and agriculture, which together comprise 15.5% of the total area (ABMI,
2014). This diverse landscape supports a high diversity of mammals, including grey wolf (Canis

lupus; hereafter wolf), caribou, moose, black bear (Ursus americanus), white-tailed deer
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(Odocoileus virginianus), Canada lynx (Lynx canadensis), coyote (Canis latrans), red fox
(Vulpes vulpes), fisher (Pekania pennanti), and marten (Martes americana).
Sampling design

Our work was part of the joint Canada-Alberta Oil Sands Monitoring program (Roberts et
al. 2022), and our design follows the terrestrial Biological Monitoring Program’s BADR design
We stratified this region according to the degree of anthropogenic development (high, medium,
and low development) (Smith 2018, Bayne et al. 2021a) and selected six landscape units (LUs)
defined by hydrologic boundaries and each covering 1000-2000 km? (Figure 2). To quantify
large mammal relative abundance in each LU, we employed a constrained stratified sampling
design wherein LUs were stratified into upland (>50% upland deciduous forest) and lowland
(>50% wet coniferous forest) categories. Within each LU, we divided the area into 2 km?
hexagonal grid cells using ArcGIS (Version 10.3; ESRI 2014), ensuring that the cells were
located within 100 m of accessible roads or trails, as identified in the Alberta Biodiversity
Monitoring Institute’s ‘Wall-to-Wall Human Footprint Inventory, Enhanced for Oil Sands
Monitoring Region’ (hereafter ABMI HFI) (Alberta Biodiversity Monitoring 2021).

From this candidate set of 60 cells per LU, we randomly selected 40-50 cells for each
LU, adjusting the selection criteria to >25% for either upland or lowland strata if 30 cells were
not identifiable. One remote infrared wildlife camera (Reconyx PC900 Hyperfire™, Holmen,
WI, USA) was deployed within each selected cell, positioned at least 100 m from active human-
use roads and trails and at least 1 km from other camera locations in adjacent cells. Cameras
were strategically placed along active wildlife trails to enhance the probability of detecting
species (MacKenzie et al. 2003, MacKenzie and Royle 2005, MacKenzie et al. 2017b).

Additionally, a scent lure (O’Gorman’s™ Long Distance Call, O’Gorman’s MT) was applied to
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a bait tree at each camera location to further increase the likelihood of mammal detection and
reduce the frequency of false absences (Stewart et al. 2019b). Images were identified to species
by trained reviewers using Timelapse Image Analyzer 2.0 (Greenberg et al. 2019a).

In this design, we deployed remote cameras across these six LUs from 2021 to 2023
(Figure 2). Each LU was monitored for approximately 12 months, with two LUs observed from
2021 to 2022 and four LUs from 2022 to 2023; however, some monitoring periods were limited
due to logistical constraints.

Quantifying natural and anthropogenic landscape features around cameras

We quantified anthropogenic disturbance features from the ABMI HFI dataset (Alberta
Biodiversity Monitoring 2021)grouping together ecologically similar features (Table S1). We
quantified natural landscape features using landcover data from the ABMI Wall-to-wall Land
Cover Map 2010 Version 1.0 (Alberta Biodiversity Monitoring 2010). We employed our multi-
scale analysis by extracting landscape data at 20 buffer widths ranging from 250-meter radius to
5000-m radius, in 250-meter increments surrounding the camera locations.

To assess multicollinearity among covariates, we conducted pairwise Pearson’s
correlation tests within each spatial scale. Variables with a correlation coefficient (r) exceeding
0.6 were either excluded from a model or merged into a single variable if ecologically justified
(Zuur et al. 2010b). The final selection of HFI and land cover variables used for subsequent

analyses is summarized in Table 1.
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Well Sites

Seismic Lines

3D Seismic
Lines

Figure 1. Schematic of a camera site within a Landscape Unit, and the features surrounding it.
Within a 250-m radius of a camera the site is predominantly conifer forest (green), with some
cutblock. Different features are captured as the spatial scale increases. So too does the ecological
“neighborhood” of the moose, as its occurrence at a site can depend on the presence of
conspecifics, competitors, and predators, which are cueing into landscape features aggregated at
different scales.
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Figure 2: Map of study area in the Oil Sands Region (OSR) of Alberta, Canada with landscape
units (LUs; in green) and camera deployment sites within each LU (black points).
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Model framework
We define an “optimal spatial scale” as one at which quantified habitat explains species’
occurrence better than other scales (Holland et al. 2004, Fisher et al. 2011), as measured by AIC
weight and model validation (Burnham and Anderson 2002a). To evaluate how the optimal
spatial scale varies with species and different types of landscape processes (e.g., anthropogenic
versus natural), we performed three distinct analyses. First, we assessed the best-fitting spatial
scale for each species using only anthropogenic (HFI) covariates; in the second, we used only
natural (landcover) covariates; and in the third, we employed a mixed approach incorporating
both landscape types (i.e., global models). For all analyses, we constructed generalized linear
mixed models (GLMMSs) for the global models according to Equation 1, which was modified for
the anthropogenic and natural landcover models (see below)
Equation 1:
nij = Bo + BiHarvest;; + f,Industrial;; + Bz Pipelines/TransmissionLines;;
+ BiSeismiclines;; + fs3DSeismic;; + BeTrails;; + [, Wells;;
+ BgDeveloped;; + PoForest;; + pioGrassland;j + By;Shrub;; + LU;
logit(Bl-j) = nij
Monthly species occurrence;j~ Bernoulli(8;;)
LU;~ Gaussian(0, %)

Monthly species occurrence is represented as the i observation at LU j, where LU is a random
intercept with j level j= individual landscape unit. Monthly species occurrence was assumed to
follow a Bernoulli distribution, whereby each month was considered an independent trial where a
species was detected (1) or not detected (0) within a calendar month. Mammal occurrence was

modeled as a proportional binomial response variable, and calculated as the proportion of months
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a species was present for all months that had 15 (approximately 0.5 month) or more fully
operational camera days, with the months of December through March excluded from black bear
occurrence calculations to account for their hibernation period. Note we treated 0’s a true and not
as in occupancy models (MacKenzie et al. 2002), which partition 0 in an e.g. 0101 detection
history as error. Mammals temporarily emigrate from sites and the time spent in patch is a part of
the biological process we are measuring. A non-detection of a species on a wildlife trail, with
lure, in an entire month, is confidently treated as a true absence.

To enhance computational efficiency and facilitate comparisons of effect sizes,
continuous variables were standardized (mean = 0, standard deviation = 1) for each spatial scale
independently. For the anthropogenic analysis equation 1 was reduced to include harvest,
industrial, pipelines/transmission lines, seismic lines, 3D seismic lines, trails, and wells as fixed
effects while the natural landcover analysis included forest, grassland, and developed landcover
types.

Models were constructed using the glmmTMB package in R version 4.2.1 (Brooks et al.
2017). To determine the most appropriate model (i.e., spatial scale) for each species, we used
Akaike Information Criterion corrected for small sample size (AICc) and selected the lowest
AICc as the most supported model (i.e., spatial scale) from each of the three analyses (Akaike
1998, Burnham and Anderson 2002a), using the MuMIn package (Barton 2020).

RESULTS
Camera operability and mammal detections

The study generated a total 208,655 non-blank images across all six LUs and 82,027

camera trap nights. Of those 178,730 images were of 22 different mammal species identifiable to

the species level; the most common species detected on cameras was white-tailed deer (hereafter
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deer) with 67,643 images and the least common was the North American porcupine (Erethizon
dorsatum) with 7 images. Other species detected in decreasing order of images included, black
bear (46,306), moose (28,692), coyote (10,355), snowshoe hare (Lepus americanus; 10,218),
wolf (4,482), North American red squirrel (Tamiasciurus hudsonicus; 3,798), lynx (2,344),
caribou (1,452), fisher (1,188), red fox (782), marten (637), cougar (Puma concolor; 442),
wolverine (Gulo gulo; 137), striped skunk (Mephitis mephitis; 66), river otter (Lontra
canadensis; 38), long-tailed weasel (Mustela frenata; 38), elk (36), short-tailed weasel (Mustela
erminea; 25), mule deer (Odocoileus hemionus; 9), and North American beaver (Castor
canadensis; 9).
Evidence for domains of scale

Spatial scale domains emerged for some species but not all and differed between natural
and anthropogenic landcover (Figure 3-5). For example, when considering both landcover types
(i.e., global models) coyote, fisher, wolf, red fox, and white-tailed deer - to a lesser degree - all
showed evidence of a domain, whereby spatial scales within £ 250m - 500m of the best-fit
spatial scale had similar AICc scores and model weights to the best-fit buffer (Figure 3).
However, when considering solely anthropogenic disturbance features, fisher, wolf, moose, and
coyote - to a lesser degree - showed evidence of a domains (Figure 4); while moose, red fox,
white-tailed deer with wolf and lynx - to a lesser degree - showed evidence of a characteristic
scale when modeled with natural landcover features (Figure 5). Several species showed
evidence of domains of scale with all three analyses; AICc scores for the best-fit models for
coyote, fisher, and wolf were all <1 AICc from subsequent models of similar spatial scales
(Table 2).

Optimal spatial scales for natural and anthropogenic landcover
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Optimal spatial scales for each species — that which was best supported by weight of
information-theoretic evidence — were also dependent on the types of landcover heterogeneity
(Table 2). All three analyses — anthropogenic, natural, and combined landcover — were not in
agreement on the optimal spatial scale for any species, although the optimal buffer for the global
analysis aligned closely (e.g., optimal buffers were the same or within 250m) with either the
anthropogenic or landscape analysis for all species except fishers (where the optimal global
model was at a spatial scale between the optimal models for the other two analyses; Figure 6)).
Additionally, the relative size of best-supported spatial scales varied across analyses, with no
consistent pattern in spatial scale differences between anthropogenic, global, and landcover
models. For example, fishers, wolf, lynx, red fox, and white-tailed deer all had smaller optimal
spatial scales for anthropogenic models relative to the landcover models while black bear,
caribou, coyote, and moose all had smaller optimal spatial scales for anthropogenic models
relative to the landcover models (Figure 6).

Species-specific spatial scales

Within an analysis, the optimal spatial scale varied across species and encapsulated a
large range of sizes with a minimum size of 250 meters for black bears (global and landcover
models), lynx (global and anthropogenic), moose (global and landcover) and caribou (landcover)
to 5,000m for coyote (global) (Figure 6). There were no discernable trends in best-supported
spatial scales across species relating to either body size or trophic level. For example, our four
largest species (black bear, white-tailed deer, caribou, and moose) had optimal spatial scales
ranging from 250m — 4500m across the three analyses and our four smallest species (fisher, red

fox, lynx, and coyote) had optimal spatial scales ranging from 250m — 5000m (Table 2).
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DISCUSSION

Habitat loss is a major driver of global biodiversity loss, but the impacts of loss echo well
beyond the patch or stand removed. In this multi-landscape analysis across the western boreal
forest oil sands, the density of landscape change as far 4500-m away from a camera trap affected
mammal species’ relative abundance there. This is expected under theory; landscape
supplementation, complementation, and other landscape processes appear as altered (e.g.
harvested, removed, or fragmented) patches but manifest as population processes (Addicott et al.
1987, Pulliam and Danielson 1991, Dunning et al. 1992). Here, we show that landscape change
amplifies well beyond the local patch, or the amount of habitat altered, to affect species’ spatial
distribution and relative abundance, and this is true of the entire mammal community we
analyzed.

The spatial scale at which natural and anthropogenic heterogeneity best explained
species’ relative abundance varied among species, and not predictably. The optimal spatial scale
was not related to body mass, as observed in the single-landscape study by Fisher et al. (2011)
based on Hollings’ spatial discontinuity hypothesis (Holling 1992). Nor was the optimal spatial
scale related to trophic level, as expected since predators generally have larger home-range sizes
than prey (Lindstedt et al. 1986, Kelt and Van Vuren 2001).

Moreover, the optimal scale differed among natural and anthropogenic features for all
species except white-tailed deer. There was no directionality to these differences. We predicted
that anthropogenic features, being a novel intrusion, would have spatially farther-reaching
influence on species’ space-use than do natural features. This was the case only for four of the

nine species we analyzed (black bear, caribou, coyote, and moose), so does not hold generally.
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Domains of scale — a series of spatial scales similar in size at which species-habitat
relationships hold constant (Wiens 1989, Wiens and Milne 1989) — were not apparent across the
community, observed only for a few species, and these domains varied among natural and
anthropogenic models. In global (combined natural and anthropogenic models), evidence for
scale domains was observed for five of nine species: coyote, fisher, wolf, red fox, and white-
tailed deer. Anthropogenic disturbance models showed scale domains for only four species, and
natural heterogeneity models showed scale domains for a different four species. We had hoped
that this empirical analysis would follow theory and reveal some general laws (Lawton 1999,
Allen and Hoekstra 2015) wherein optimal spatial scales are indeed “characteristic” sensu
(Holland et al. 2004, Fisher et al. 2011), but this is not supported.

Nonetheless, optimal scales do plainly merge from multi-scale species-habitat models, as
shown for multiple other taxa including beetles (Holland et al. 2005) and birds (Mahon et al.
2016, Stuber and Fontaine 2019, Mazziotta et al. 2024). The ramification for modelling is that is
insufficient to choose a single spatial scale and then assume that habitat quantified at this scale
provides the best explanation for habitat selection and spatial distribution. We echo former
researchers in advocating for a multi-scale approach whenever possible.

The ramification for ecological conservation is that for many mammal species, the effects
of anthropogenic landscape change on point estimates of relative abundance is manifested at
spatial scales encompassing the “ecological neighborhood” (Addicott et al. 1987) around a
camera site. Thu, the impact is more than habitat loss per se — whether it be cutting of mature
forest for timber, replacement of natural habitat with early-seral vegetation as in well sites or
building a road — but instead a change in the relative value of the surrounding landscape. This net

value can be positive or negative, providing subsidies or risks, creating winners and losers
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(Fisher and Burton 2018, Mahon et al. 2019). Mitigating the effects of development through
restoration will therefore require large-scale planning that recovers multiple forms of

disturbance, not simply seismic lines as is currently practiced (Tattersall et al. 2020b, Beirne et

al. 2021a, Dickie et al. 2022).
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Table 1: Names and descriptions of 11 Human Footprint Inventory (HFI) and land cover (LC) covariates used in generalized linear mixed
effects models (GLMMs) of nine boreal mammal species in the Oil Sands region of Alberta, Canada. Descriptions for covariates were
derived from the metadata documentation for Alberta Biodiversity Monitoring Institute’s ‘Wall-to-Wall Human Footprint Inventory,
Enhanced for Oil Sands Monitoring Region’ (HFI) and Alberta Biodiversity Monitoring Institute’s ‘Wall-to-Wall Land Cover Map 2010

Version 1.0°
Variable Variable | Units Unit description Variable Description
name type
Harvest HFI Proportion | The proportion of harvested Harvest is defined as, areas where forestry operations have
areas within the buffer area. occurred (clear-cut, selective harvest, salvage logging, etc.)
OSM HFI Proportion | The proportion of various Borrowpits, clearings, facilities, and mines are all defined in
industrial industrial features (i.e. detail in Table S1 of the supporting information.
borrowpits, clearings,
facilities, and mines) within
the buffer area.
Pipelines and | HFI Proportion | The proportion of both Pipelines and transmission lines are defined in detail in Table S1
transmission pipelines and transmission of the supporting information.
lines lines within the buffer area.
Seismic lines | HFI Proportion | The proportion of seismic Seismic lines are defined as cleared corridors created during
lines within the buffer area. hydrocarbon exploration. They are a polygon feature class
derived from a 3-meter buffer (6-meter total width) of a pre-low-
impact-seismic centerline.
Seismic lines | HFI Proportion | The proportion of 3D seismic | 3D seismic lines are defined as cleared corridors created during
3D lines within the buffer area. hydrocarbon exploration. They are a polygon feature class
derived from a 1.5-meter buffer (3-meter total width) of a pre-
low-impact-seismic centerline.
Trails HFI Proportion | The proportion of trails Trails are defined as cleared corridors surfaced with dirt or low
within the buffer area vegetation for human/vehicle access.
Wells HFI Proportion | The proportion of wellsites Wellsites are defined as, ground cleared for an oil/gas well pad
within the buffer area where at least one well is currently active
Lc develope | LC Proportion | The proportion of developed | Developed land is defined as urban and built-up areas (including

d

land within the buffer area

industrial sites), impervious artificial surfaces (e.g. airport
runaways), railways and roads.
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within the buffer area

Lc_forest LC Proportion | The proportion of coniferous, | Treed areas with at least a 10% crown closure of trees of any
broadleaf, and mixed forests | kind.

Lc grassland | LC Proportion | The proportion of grassland Grasslands are defined as predominantly native grasses and other
within the buffer area herbaceous vegetation with a minimum of 20% ground cover.

Lc_shrub LC Proportion | The proportion of shrubland | Shrubland is defined as at least 20% ground cover which is at

least one-third shrub, with no or little presence of trees (<10%
crown closure)

Table 2: Data for the most supported models (e.g. spatial scale) at predicting mammal presence/absence from three analyses (global,
anthropogenic features, and landscape features) for nine mammal species in the oil sands region, Alberta, Canada. The most supported
model (lowest AIC) from each analysis is listed along with the weight for that model and the delta Akaike Information Criterion
(AAIC) for the next best performing model. Models in bold were >2 AIC lower than the next model.

Species Top global Weight | AA1C* | Top anthropogenic Weight AAIC* Top landcover Weight AAIC*
model model model

Black bear 250m 0.678 | 5.15 4000m 0.174 0.17 250m 0.915 9.19
Caribou 1000m 0.796 | 4.63 1000m 0.884 5.16 250m 0.222 1.23
Coyote 5000m 0.444 | 041 4750m 0.268 0.26 3750m 0.192 0.12
Fisher 1000m 0.266 | 0.84 250m 0.395 0.38 2500m 0.205 0.28
Grey wolf 3500m 0.303 | 0.45 2000m 0.245 0.09 3500m 0.243 0.26
Lynx 250m 0.982 | 8.36 250m 0.996 12.94 500m 0.207 1.40
Moose 250m 0.941 | 7.02 750m 0.526 0.90 250m 0.988 11.28
Red fox 4750m 0.367 |0.03 1750m 0.733 3.08 4750m 0.325 0.26
White-tailed 1500m 0.234 | 0.16 1500m 0.732 2.64 4500m 0.611 2.73
deer

*The delta AIC is presented for the next best model rather than the most supported model itself as the weight for all most supported models is zero, the delta AIC
for the next best model is included to be transparent about the certainty of any one model.
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Figure 3: Model weights plotted for each model at predicting mammal presence/absence for nine
mammal species in the oil sands region, Alberta, Canada. Results are from model selection for
global models (i.e., models that included both anthropogenic and landscape variables). All models
included the same variables extracted at different buffer widths from the camera.
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Figure 4: Model weights plotted for each model at predicting mammal presence/absence for nine
mammal species in the oil sands region, Alberta, Canada. Results are from model selection for
anthropogenic models (i.e., models that included only anthropogenic variables). All models
included the same variables extracted at different buffer widths from the camera.
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Figure 5: Model weights plotted for each model at predicting mammal presence/absence for nine
mammal species in the oil sands region, Alberta, Canada. Results are from model selection for
landscape models (i.e., models that included only landscape variables). All models included the
same variables extracted at different buffer widths from the camera.
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5. WHAT’S UP WITH BLACK BEARS? SEASON AND
DEMOGRAPHIC DRIVE OCCURRENCE ON OIL SANDS
DISTURBANCE FEATURES

Megan Braun, Andrew F. Barnas, Jason T. Fisher

OSM SUMMARY

Black bears are one the indicators signalled by Indigenous community members as being
culturally important. The effects of OS development on black bears have been very ambiguous,
with a few studies showing contextual and contrasting responses (Tigner et al. 2014, Fisher and
Burton 2018, Fisher and Ladle 2022b). We hypothesized that because previous studies have
lumped together different age-classes and seasons, that approach may be obscuring responses to
OS features if these differ among those members of the population and through time. We split up
our data into seasons and identified bears with and without cubs, and our hypotheses were
confirmed: bears react to OS features differently in different seasons and depending on whether
they have a cub or not. Thus, we show that OS features do indeed have demonstrable and strong
effects on this important mammal species, as do other features, and that perceived risk of humans
is a likely mechanism for some of these responses. This knowledge will help guide an
understanding of how OS features affect bears, to inform any mitigation actions and future

landscape planning.

Abstract
Habitat selection by wildlife can depend on trade-offs between the spatiotemporal
distribution of perceived risks and rewards, both of which anthropogenic disturbance may alter.

In the western Nearctic boreal forest, landscape changes associated with petroleum extraction
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have altered habitat availability for multiple mammals in clear patterns. However, one species -
black bear — presents unique challenges. Black bear habitat selection in relation to disturbance
lacks consensus, with contrasting results indicating that response to disturbance remain largely
unknown. However, previous research has not considered potential seasonal and demographic
influences on behaviour. Here, we hypothesized that feature use by black bears depends on a
trade-off between associated benefits and risks, which vary seasonally, and that different bear
demographics (i.e., solitary adults versus females with young) weigh these benefits and risks
differently, manifesting as differential habitat selection. Using data from 233 camera-traps
deployed across six landscapes across a gradient of disturbance, we constructed a candidate set
of generalized linear mixed models with predictors hypothesized to influence bear occurrence. In
support of our hypothesis, we found that bear occurrence in relation to disturbance features
varied seasonally and between demographic groups. Most notably, solitary adult occurrence was
negatively affected by roads in spring and fall but not summer, indicating a potential risk
response to hunting activity in the former seasons. Solitary adult occurrence was also positively
influenced by moose in spring (likely from calf predation), and negatively by linear features used
by off-highway vehicles in summer and fall. Female with young occurrence was negatively
influenced by roads in all seasons, and by linear features in spring and fall. This study was
conducted as part of the Oil Sands Monitoring Program, and results will directly inform
conservation initiatives. Broadly, the work provides key insights into how changing risk-reward

trade-offs drives variation in habitat selection by wildlife over time and between demographics.
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Introduction

Habitat selection by wildlife can depend on a trade-off between the spatial distribution of
perceived risks and rewards across a landscape. In this trade-off, if high reward food-rich
habitats also have high risk (e.g. abundant predators), then lower reward food-poor habitats with
less risk may be preferred (Holbrook and Schmitt 1988b). Further, risk-reward trade-offs are not
static, but rather dynamic and fluctuate over an animal’s lifespan. Trade-offs in habitats may
vary temporally when risks and rewards themselves vary temporally: for example, predation risk
changing along with the diurnal pattern of predator activity (Lima and Dill 1990), or forage
availability fluctuating by season. The willingness of an animal to take risks can also shift though
time based on life history stage. For example, under parental investment theory (Trivers, 1972),
animals with offspring may prioritize avoiding risks to increase chances of offspring survival
(Ben-David et al. 2004).

Dynamic assessment of trade-offs by animals is further complicated by anthropogenic
disturbance, which can alter the spatiotemporal distributions of risks and rewards on the
landscape. Anthropogenic disturbances present a number of new perceived risks, such as roads
with noisy vehicles and collision risk (Poulin et al. 2023), but also benefits such as food
availability from waste disposal near settlements. For prey species, human disturbance can also
confer an interesting benefit known as the “human shield” effect, where prey may occur close to
disturbances/human activity to buffer against predators if they avoid these risky areas (Berger
2007).

Within the Nearctic western boreal forest lies Alberta’s Oil Sands Region (OSR), where
largescale anthropogenic landscape change associated with petroleum extraction, timber harvest,

and transportation has influenced mammal habitat selection (Pickell et al. 2013, Roberts et al.

50



2022). These landscape disturbances are typically categorized as polygonal features (e.g., oil
well sites) and linear features (e.g., seismic lines), which act differently on different mammal
species (Roberts et al. 2022). Depending on species-specific resource requirements, features
result in “winner” species that generally benefit from the disturbances, and “losers” which are
negatively impacted (Fisher and Burton 2018). Numerous studies have investigated the responses
of individual species, and the mammal community as a whole, to disturbance features, ultimately
to direct industrial activities and restoration efforts (Fisher and Burton 2018, Beirne et al. 2021b,
Wittische et al. 2021a). Although clear and consistent patterns have emerged for some species,
such as the use of linear features by canids (Wittische et al. 2021a), there is still uncertainty
regarding the responses of some community members, especially the large, omnivorous black
bear (Ursus americanus).

Black bear habitat selection in relation to linear and polygonal disturbances in the OSR is
largely inconsistent, with research indicating either a positive (Mosnier et al. 2008, Bayne 2011,
Latham et al. 2011a, Tigner et al. 2014, Demars and Boutin 2018, Dickie et al. 2020b), negative
(Fisher and Burton 2018, Fisher and Ladle 2022¢, Cuveira-Santos 2024), or negligible attraction
to disturbance features (Beirne et al. 2021b). Ultimately, this lack of consensus signifies that
overall, black bear preference and use of these features is unknown, making it impossible to
draw informative conclusions for management actions. However, it is possible that these
analyses were performed at scales inadequate to discern extant relationships. Studies on black
bear habitat selection in the OSR have largely considered feature response over the entire active
season (i.e., the period where bears are not undergoing hibernation) and without demographic
discernment (with the exception of select telemetry work, ex. Latham et al. (2011a)). However,

black bear behaviour is both highly seasonal (Pelchat and Ruff 1986) and varies by demographic
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group (Gantchoff et al. 2019). Consequently, important patterns of feature response could have
been previously overlooked due to a lack of consideration of bear biology, warranting a finer
scale investigation into potential mechanisms (i.e., risks and rewards) that dictate both feature
attraction and avoidance.

Several factors could mediate black bear attraction to linear and polygonal features. First,
forage subsidies are provided throughout the active season in both feature types. Black bears are
opportunistic omnivores, consuming primarily vegetation and tending to select available food
with the highest nutrient content (Pelchat and Ruff 1986). Past research into the plant component
of their diet by Pelchat and Ruff (1986) in the Alberta boreal forest suggests that this can be
divided temporally into several stages. Upon emergence from hibernation, bears start by
consuming green vegetation, shifting to early ripening berries by mid-July and then to late-
ripening berries by mid-August until hibernation onset. Other diet analyses conducted throughout
the boreal forest are consistent with these general stages (Raine and Kansas 1990, Mosnier et al.
2008, Romain et al. 2013, Lesmerises et al. 2015). Most plants in their diet are abundant in early-
seral vegetation communities such as on linear and polygonal features (Fisher and Wilkinson
2005, Dabros et al. 2018), and the spring green-up may occur earlier relative to forested
landcover due to higher solar irradiation (Mosnier et al. 2008). Berry species also appear to
thrive in disturbance features: Velvet leaf blueberry (Vaccinium myrtilloides) was found to have
significantly greater vigour and fruit production on seismic lines relative to adjacent forest
(Dawe et al. 2017) and significantly higher berry production in open canopies (Nielsen et al.
2020).

Second, linear features provide movement subsidies. Seismic lines facilitate travel

between vegetation patches and can enhance the search for animal prey (Bastille-Rousseau et al.
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2011, Dickie et al. 2020b, Tattersall et al. 2023b). In the western Nearctic boreal forest,
mammalian prey species of black bears include snowshoe hare and neonates of ungulates like
white-tailed deer, caribou, and moose (Latham et al. 2011a, Lesmerises et al. 2015). These
movement benefits may be particularly important in the spring when there are newborn fawns
and calves, and when vegetation is both scarcer and nutrient-poor, thus requiring more frequent
movements between patches (Young and Ruff 1982).

Although disturbance features provide forage and movement subsidies throughout the
active season, feature use may depend on weighting these benefits with associated risks. One risk
that could result in feature avoidance is the presence of human hunters on and near features. In
Alberta, there are both spring and fall hunting seasons for black bears, and hunting is the primary
source of mortality (Alberta Government 2016). During these periods, hunting risk may cause
black bears to avoid linear features, which are used as access routes for hunters (Dabros et al.
2018), as well as polygonal features, where bears could easily be spotted. Stillfried et al. (2015)
support this conjecture, wherein black bears increased avoidance of non-paved roads (which
were used as hunter access routes) during the hunting season relative to the non-hunting season.
Ordiz et al. (2012) also found evidence that bears are aware of hunting risk, altering their
behaviour and movement patterns during hunting seasons.

Risk of feature use may, however, vary by demographic group. For females with
dependent young, another risk that drives habitat selection is the presence of solitary male and
female black bears. Infanticide can be a major source of cub mortality in bear populations, and
females with young have been shown spatially segregate themselves from other bears even if this
means selecting habitats with poorer food resources (Ben-David et al. 2004, Czetwertynski 2008,

Gantchoff et al. 2019). If solitary adult bears are using the disturbance features for the forage and
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movement subsidies, it is therefore possible that females with cubs will avoid them despite these
benefits. However, this pattern may reverse temporally if solitary adult bears avoid the features
during the spring and fall hunts. Females with cubs are protected from harvesting (Alberta
Government 2016) and there is evidence that they could be aware of this protection. Ordiz et al.
(2012) found that movement patterns of females with cubs were barely altered by the hunting
season relative to solitary adult bears. Additionally, Stillfried et al. (2015) found that female
black bears selected habitat much closer to the unpaved roads during the hunting season than
males. They suggested this could be due to cub presence, and that females may be using hunter
proximity as a human shield against other bears (Stillfried et al. 2015). It is possible that a
similar phenomenon occurs with OSR disturbance features.

The objective of this study is to weigh evidence for competing hypotheses about black
bear habitat selection in relation to OSR disturbance features. It is also to determine the
importance of disturbance features in driving habitat selection relative to other predictors, such
as prey abundance and natural landcover. We hypothesize that (1) bear use of features varies
seasonally as risks and subsidies are differentially present, and (2) feature use varies for bears
with dependent young, versus solitary adult bears, due to susceptibility to different risks (hunting
for the former, infanticide for the latter). We predict that solitary adult bears will avoid linear and
polygonal disturbance features during the spring and fall hunting seasons but will use features in
the summer to benefit from forage and movement subsidies. Conversely, we predict that females
with young will be attracted to linear and polygonal features during the hunting seasons to
benefit from subsidies and the “shield” against infanticide risk but will avoid them in the summer

due to the presence of solitary adult bears.
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Methods
Study area

This study was situated in the boreal ecozone of northeastern Alberta, Canada. The
landscape here is characterized by a mixture of upland forests composed of jack pine, white
spruce, aspen, and lodgepole pine, and lowland muskegs dominated by larch and black spruce
(Pickell et al. 2013). Forests present as a patchwork of different stand ages due to the occurrence
of frequent natural disturbances including insects and wildfire (Pickell et al. 2013). Underlying
this landscape is one of the worlds’ largest hydrocarbon deposits, which initially spurred the
establishment of the OSR (Alberta Government 2023). The OSR is composed of three
administrative regions that together account for 21% of the province’s land area (Bayne et al.,
2021) Throughout the OSR, there is significant industrial development that has resulted in
widespread landscape change (Pickell et al. 2016a). With respect to bitumen extraction, surface
mining is restricted to a relatively small portion of the Athabasca region, while in situ mining is
prevalent throughout the rest of the area, resulting in dense networks of disturbance features
including roads, seismic lines, pipelines, and well pads (Bayne et al., 2021).
Camera trap arrays

To investigate black bear habitat selection, detection data was acquired from camera traps
placed within six different study landscapes (“landscape units”) throughout the OSR (Fig. 1.).
Defined by watershed boundaries, each landscape unit was approximately 1000 km?, and varied
in their respective level of anthropogenic disturbance to span a gradient of low to high intensity
(Bayne 2021). To select camera deployment locations (i.e., camera “sites’), landscapes were first
stratified by dominant forest class (>50%; conifer, deciduous, and mixed wood) to account for

natural variability in sampling locations. Then, each landscape unit was overlain by a grid of 2-
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km? hexagonal cells in ArcGIS Desktop (ESRI 2014) with the cell size chosen to enable
sufficient spacing between cameras for independence in species-habitat models (Zuckerberg et
al. 2020b). 30 cells were randomly selected from each stratum. For ease of site access, cells were
constrained to within 100 meters of accessible roads (when possible), except for LU21 where all
sites were reached via helicopter.

Among the selected cells in each landscape, 40 — 50 Reconyx PC900 Hyperfire infrared
remote digital cameras (Holmen, WI) were deployed, with one camera per cell. Detection
probability for wildlife was enhanced by placing cameras along an active game trail (Fisher and
Burton 2018) and by administering scent lure (O’Gorman’s™ Long Distance Call) on a tree 4-7
meters in front of each camera. Cameras were also placed approximately 1 meter from the
ground, and a minimum of 100 meters from active roads and 1 kilometer from other cameras.
Additionally, cameras were set to high sensitivity, and once triggered, were programmed to take
a single photograph with no delay between consecutive triggers. A ‘timelapse’ photo was
programmed to be taken at the same time daily to ensure functionality.

In two arrays, cameras were deployed in July 2021 and retrieved in either February or
September 2022 due to logistical constraints. In the other four arrays, cameras were deployed in
September/October 2022 and retrieved in September/October 2023. Once collected, images (Fig.
2.) were manually classified by trained reviewers using Timelapse Image Analyzer 2.0
(Greenberg et al. 2019b) to determine species identities and characteristics and demographic
information. All further analyses on these data were performed in R V4.4.1 (R Core Team

2024a).
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Figure 1. The six landscapes surveyed in northeastern Alberta and individual camera sites (left). The inset map indicates the extent of

the OSR in Alberta. LU13) n =41, LU21) n =36, LU15) n =39, LU3) n = 36, LU2) n =42, LUl) n = 39.
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Figure 2. Camera images of black bears in the study landscapes. Top to bottom: adult, cubs,

yearling.
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Bear demographic data

To examine patterns in black bear habitat selection, we evaluated habitat use separately
for two demographic groups: (1) females with young and (2) solitary adults, within each of the
three seasons during the active period. We first used the Timelapse images to obtain independent
detection events for bears, which were those that occurred a minimum of 30 minutes apart, and
recorded the age class data (i.e., whether the bear(s) detected in images were young of year,
young of last year, or adults). One error that needed to be accounted for during this step was false
cub absences. This can occur due to the way that independent detection events are classified, by
taking the tagged information of the individual(s) in only one of the images or episodes (series of
images that occur less than one minute apart) of those that occur within 30 minutes of each other.
It is possible that a female bear could be detected without her cubs first, resulting in the detection
being classified as a solitary adult, but her cubs appear in subsequent photos. To minimize this
error, we determined the max group count for each age class within an independent detection
event and used this value to define demographic values. We classified females with young as
episodes having a group count of cubs or yearlings greater than zero, and solitary adults as
episodes with a group count of adults greater than zero, and a group count of cubs or yearlings
equal to zero.

We then constructed a proportional binomial response variable (hereafter “occurrence
frequency”) for whether a bear demographic group was detected (1) or not (0) at a site during an
occasion period (15 days). The number of occasion periods with presences/absences were
summed for each demographic within three seasons with seasonal boundaries defined by
hunting/vegetation seasons: spring (April 1% — June 14™), summer (June 15" — August 28"), and

fall (August 29" — November 11"). Winter was not considered because bears are hibernating and
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thus not usually active during this period. Since not all cameras were active throughout all
occasion periods, only occasion periods with a camera active for greater than 6 days (half of the
occasion period) were considered.

Predictor variables

For predictors of bear occurrence, we examined four categories of predictors
hypothesized to influence habitat selection: 1) prey species, 2) polygonal disturbance features, 3)
linear disturbance features, and 4) natural landcover. In terms of prey, we calculated total
independent detections for three species: hare, moose, and white-tailed deer, at each site within
each season. We did not consider other prey species (ex., caribou) due to lack of detections.

We obtained anthropogenic landcover data from the current version of the Alberta
Biodiversity Monitoring Institute’s (ABMI) Human Footprint Inventory (Alberta Biodiversity
Monitoring Institute 2019). In terms of linear features, we retained roads, seismic lines, 3D
seismic lines, pipelines, transmission lines, and trails. For polygonal features, we considered well
sites and harvest blocks. Natural landcover data on the distribution of shrubland, grassland,
broadleaf forest, coniferous forest, and mixed-wood forest was obtained from the most recent
version of ABMI’s Wall-to-wall Land Cover Map (Alberta Biodiversity Monitoring Institute
2010). Since the scale at which the analysis is performed around camera sites is important for
species habitat selection (Fisher et al. 2011), we extracted the proportion of natural and
anthropogenic landcover features within a series of concentric circular buffers around each
camera site (ranging from 250m to 1500m, increasing at 250m increments).

Assessing correlation of predictors
At each spatial scale, we assessed collinearity among predictor variables using Pearson’s

correlation coefficient, ensuring that all pairwise combinations were below a threshold value of

60



0.7 (Zuur et al. 2010a). We removed coniferous forest due to collinearity with broadleaf forest,
since forest cover in this region is typically one or the other. Pipelines and transmission lines
were also highly collinear, so we combined these features since they share similar ecological
function. The 1500m buffer was chosen as the largest buffer size because roads and well pads
became highly correlated at greater distances, and both covariates were key parameters of
interest that could not be removed from the analysis.
Model structure and candidate set

To evaluate which predictor variable(s) best explain black bear distributions, we created a
candidate set of generalized linear mixed models (GLMMs) with binomial distribution and logit-
link function (Table 1). Each model in the set was founded upon a hypothesis of what could best
explain bear occurrence considering the four predictor categories. We had models within each
category (ex., a “polygonal features” model containing well sites and harvest blocks). For linear
features, we had a model for roads and a separate model for features commonly used by off-
highway vehicles (OHVs) containing seismic lines, 3D seismic lines, pipelines/transmission
lines, and trails, due to difference in disturbance type and degree of vegetation. For natural
landcover, we considered a “forest model” (broadleaf and mixed-wood forest) and an “open
habitat model” (grassland and shrubland). We also had several combination models where
predictor categories were combined for a reason (ex., a “total anthropogenic disturbance
features” model that combined linear and polygonal features) as well as global and null models.
To ensure comparability, all predictor variables included in models were z-scaled (mean = 0, sd.
= 1) using the ‘scale’ function in R.

For both demographic groups, out of the range of buffer distance, the spatial scale that

produced the lowest AIC score for the global model was 250-m, so we proceeded to evaluate
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candidate models at this scale. For solitary adults, candidate models were evaluated separately
within each season. Additionally, for comparison of a seasons-based approach versus the
approach of disregarding season as done in many past studies, model selection was performed
for the three seasons combined. In the case of females with young, there were not enough
detections within individual seasons to perform separate analyses, so models were evaluated for
the seasons combined with season as an interaction (see Table 2 for modified model set). This
approach was not ideal as it did not identify a top model for each season, but was the best option
given data limitations. To reduce the complexity of models containing interaction terms, the
model set was modified to create the predictor variable “OHV linear features” which combined
linear features used by off-highway vehicles together. Each model including season as an
interaction with predictors was paired with an identical model without season to determine
whether occurrence near predictors varied temporally. A model with solely season as a predictor
was also added to the model set, and the global model was eliminated due to complexity.
Random effect structure

For solitary adults, “landscape unit” was considered as a random effect in each model as
these were spread across space and defined by varying degrees of disturbance. The fit of this
random effect was evaluated using AIC, which indicated that for summer and combined season
models, including random effect was better supported than omitting it (Appendices Table 4),
suggesting there is variation to be accounted for between landscape units. Although for spring
and fall the model without landscape unit as a random effect emerged on top, the random effect
was retained across all seasons for consistency. For females with young, the data frame was
structured differently, consisting of three observations per site (one per season), so a nested

random effect structure with “array” and “site”” was used to avoid pseudoreplication. The nested
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random effect structure was also better supported via AIC in comparison of intercept only

models with just array, just site, and the null model.

Model validation and predictions

For each analysis, models were ranked in an information-theoretic framework, and AIC

scores were calculated to evaluate the strength of empirical support for each. Top models were

evaluated by generating diagnostic plots (package “DHARMa”) and calculating VIF values

(package “performance”). Odds ratios were calculated and plotted for the top models to visualize

the effect of these predictors on bear occurrence.

Table 1. Candidate model set used to determine the influence of predictor variables on solitary
adult occurrence. The model set was evaluated for each season, and for all seasons combined.

Bear occurrence best explained by:

Candidate model name

Predictor variables

Roads

Linear features
used by OHVs

All linear features
(Roads + OHV)

Polygonal features

Linear and polygonal features

Open natural habitat
Open foraging areas
Forest

All natural landcover

Prey species

Roads

OHV

Linear

Polygonal

Linear + Polygonal

Open natural
Polygonal + Open natural
Forest

Open natural + Forest

Prey

Roads

Seismic lines + 3D seismic lines + pipelines
and transmission lines + trails

Roads + seismic lines + 3D seismic lines +
pipelines and transmission lines + trails

Harvest sites + wells

Roads + seismic lines + 3D seismic lines +
pipelines and transmission lines + trails +
harvest sites + wells

Grassland + shrubland

Harvest sites + wells + grassland + shrubland

Broadleaf forest + mixed forest

Grassland + shrubland + broadleaf forest +
mixed forest

Moose + white-tailed deer + hare
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Prey and linear features

Prey and roads

Food sources (forage and prey)

Food sources without roads

Global

Null

Prey + Linear

Prey + Roads

Prey + Linear + Polygonal

Prey + OHV + Polygonal

Global

Null

Moose + white-tailed deer + hare + roads +
seismic lines + 3D seismic lines + pipelines
and transmission lines + trails

Moose + white-tailed deer + hare + roads

Moose + white-tailed deer + hare + roads +
seismic lines + 3D seismic lines + pipelines
and transmission lines + trails + harvest sites
+ wells

Moose + white-tailed deer + hare + seismic
lines + 3D seismic lines + pipelines and
transmission lines + trails + harvest sites +
wells

Moose + white-tailed deer + hare + roads +
seismic lines + 3D seismic lines + pipelines
and transmission lines + trails + harvest sites
+ wells + grassland + shrubland + broadleaf
forest + mixed forest

Table 2. Candidate models used to determine the influence of predictor variables on female with
young occurrence. “OHV linear features” combines traditional seismic lines, 3D seismic lines,
pipelines/transmission lines, and trails together into one variable. Candidate models are
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otherwise identical to solitary adult models, but each has a duplicate model with season as an
interaction with each predictor variable. An additional model with only season is also present.

Bear occurrence best explained by:

Candidate model name

Predictor variables

Roads
Roads with season interaction
Linear features used by OHVs

Linear features used by OHVs with
season interaction

All linear features (Roads + OHV)

All linear features (Roads + OHV)
with season interaction

Polygonal features

Polygonal features with season
interaction

Linear and polygonal features
Linear and polygonal features with
season interaction

Open natural habitat

Open natural habitat with season
interaction

Open foraging areas

Open foraging areas with season
interaction

Forest

Forest with season interaction

All natural landcover

Roads
Roads*Season
OHV

OHV*Season

Linear

Linear*Season

Polygonal

Polygonal*Season
Linear + Polygonal
Linear*Season +
Polygonal*Season

Open natural

Open natural*Season

Polygonal + Open natural

Polygonal*Season + Open
natural*Season

Forest

Forest*Season

Open natural + Forest

Roads
Roads*season
OHYV linear features

OHYV linear features*season

Roads + OHV linear features

Roads*season + OHV linear features*season

Harvest sites + wells

Harvest sites*season + wells*season
Roads + OHV linear features + harvest sites
+ wells

Roads*season + OHV linear features*season
+ harvest sites*season + wells*season

Grassland + shrubland

Grassland*season + shrubland*season

Harvest sites + wells + grassland + shrubland

Harvest sites*season + wells *season +
grassland*season + shrubland*season

Broadleaf forest + mixed forest

Broadleaf forest*season + mixed
forest*season

Grassland + shrubland + broadleaf forest +
mixed forest
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All natural landcover with season Open natural*Season + Grassland*season + shrubland*season +

interaction Forest*Season broadleaf forest*season + mixed
forest*season

Prey species Prey Moose + white-tailed deer + hare

Prey species with season interaction ~ Prey*Season Moose*season + white-tailed deer*season +
hare*season

Prey and linear features Prey + Linear Moose + white-tailed deer + hare + roads +

OHYV linear features

Prey and linear features with season ~ Prey*Season + Linear*Season Moose*season + white-tailed deer*season +

interaction hare*season + roads*season + OHV linear
features*season
Prey and roads Prey + Roads Moose + white-tailed deer + hare + roads

Prey and roads with season interaction Prey*Season + Roads*Season Moose*season + white-tailed deer*season +
hare*season + roads*season

Food sources (forage and prey) Prey + Linear + Polygonal Moose + white-tailed deer + hare + roads +
OHV linear features + harvest sites + wells

Food sources (forage and prey) with  Prey*Season + Linear*Season + Moose*season + white-tailed deer*season +

season interaction Polygonal*Season hare*season + roads*season + OHV linear
features*season + harvest sites*season +
wells*season

Food sources without roads Prey + OHV + Polygonal Moose + white-tailed deer + hare + OHV

linear features + harvest sites + wells

Food sources without roads with season Prey*Season + OHV*Season + Moose*season + white-tailed deer*season +
interaction Polygonal*Season hare*season + OHV linear features*season +
harvest sites*season + wells*season

Season Season Season
Null Null 1
Results
Detections

66



Across the six landscapes, images were collected from 233 sites with each camera

operational for approximately one year beginning in either 2021 or 2022. Images resulted in a

total of 459 independent detections of cubs or yearlings, and 1471 independent detections of

solitary adults. By season, independent detections of solitary adults were as follows: spring, 309;

summer, 746; and fall, 416. For females with young, these were: spring, 63; summer, 235; fall,

78. Proportion of detections in each season varied (Figure 3).
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Fig. 3. Proportion of detections (occasion periods present/total number of occasions) of solitary
adults and females with young within each season. Detections were greatest in the summer for

both demographics.

Solitary adult habitat selection
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Within each season, the 250-meter buffer distance was the best supported scale for
habitat selection by solitary adults. In spring, the prey and roads model best explained solitary
adult occurrence (AICw = 0.83; Table 3). Solitary adults exhibited a strong negative association
with roads (f =-0.37, [95% CI: -0.55 —-0.17], P < 0.001; Figure 4; Figure 5; Table 7) but were
positively associated with all three prey species, most strongly with moose (f = 0.29, [95% CI:
0.15—0.44], P <0.001; Figure 4; Figure 6; Table 7) and white-tailed deer (B = 0.16, [95% CI:
0.01 — 0.32], P =0.037; Figure 4; Table 7).

In summer, the OHV linear features model was best supported (AICw = 0.67; Table 3).
The linear features model (Roads + OHV) was within 2 AAIC, indicating that the addition of
roads to OHV linear features provides some explanatory power, but not enough to overcome the
parameter penalty. In summer, solitary adults associated negatively with 3D seismic lines ( = -
0.17 [95% CI: -0.34 — -0.01], P = 0.04; Figure 4; Table 7) and pipelines/transmission lines (f = -
0.17 [95% CI: -0.34 — 0.00], P = 0.05; Figure 4; Table 7), but positively with trails (3 = 0.17
[95% CI: 0.06 — 0.29], P = 0.0037; Figure 4; Table 7). Interestingly, upon examining the summer
linear features model bears no longer avoided roads (f =-0.04 [95% CI: -0.18 — 10], P = 0.61;
Figure 5).

In fall, the prey and linear features model was best supported (AICw = 0.43; Table 3).
The linear features model was within 2 AAIC indicating that despite the parameter penalty, the
addition of prey species to this model is important for explaining occurrence. Solitary adults
exhibited a strong negative response to roads (f =-0.37 [95% CI: -0.55 —-0.19], P < 0.001;
Figure 4; Figure 5; Table 7). They also associated negatively with other linear features:
traditional seismic lines (f =-0.19 [95% CI: -0.35 —-0.03], P = 0.021; Figure 4; Table 7) and

pipelines/transmission lines (B =-0.30 [95% CI: -0.53 —-0.07], P = 0.01; Figure 4; Table 7). In
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terms of prey species, solitary adults positively associated with hare (f = 0.14 [95% CI: 0.01 —
0.27], P = 0.029; Figure 4; Table 7) and white-tailed deer (f = 0.12 [95% CI: -0.02 — 0.26], P =
0.10; Table 7), but were indifferent to moose.

Model selection was also performed across all seasons combined to compare these results
to those of a seasonal approach. In the combined approach, the prey and linear features model
was the best predictor of solitary adult occurrence (AICw = 0.69; Table 3) with the global model
second. In terms of linear features, solitary adults negatively associated with roads (f = -0.14
[95% CI: -0.25 — -0.04], P = 0.0066; Figure 7; Table 7), traditional seismic lines (f = -0.12 [95%
CI: -0.21 — -0.03], P = 0.0063; Figure 7; Table 7), 3D seismic lines (f =-0.17 [95% CI: -0.28 — -
0.06], P =0.0018; Figure 7; Table 7), and pipelines/transmission lines (f =-0.10 [95% CI: -0.20
—0.01], P =0.070; Figure 7; Table 7), and positively associated with trails ( = 0.09, [95% CI:
0.02 - 0.17],P = 0.018; Figure 7; Table 7). With respect to prey, solitary adults positively
associated with moose (f = 0.15 [95% CI: 0.07 — 0.23], P < 0.001; Figure 7; Table 7) and hare (3

=0.08 [95% CI: 0.01 — 0.15], P = 0.028; Figure 7; Table 7).
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Table 3. Top models (within 2 AAIC) for occurrence of solitary adults within each season and for females with young. See Table 6

(Appendices) for rankings of all models in each analysis.

Demographic Season Top buffer (m) Top models df log-lik AIC AAIC AICw
Solitary adults Spring 250 Prey + Roads 6 -244.06 500.58 0.00 0.83
Summer 250 OHV 6 -395.47 803.31 0.00 0.67
Linear 7 -395.34 805.18 1.87 0.26
Fall 250 Prey + Linear 10 -302.66 626.31 0.00 0.43
Linear 7 -306.57 627.63 1.33 0.22
All 250 Prey + Linear 10 -577.77 1176.54 0.00 0.69
Females with All 250 Linear*Season 11 -483.19 988.78 0.00 0.77
young
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Figure 4. Beta coefficient plots of best supported model of solitary adult occurrence in each season (spring: prey and roads; summer:
OHV linear features; fall: prey and linear features). Values <1 indicate a negative predictor of occurrence, values >1 indicate a
positive predictor of occurrence. Bars represent 95% confidence intervals.

*Wtd = White-tailed deer

*Pipe/Trans = Pipelines and transmission lines
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Figure 5. Predictive plots of changes in solitary adult occurrence with increasing road density (proportion of the 250-meter buffer
designated as roads) for each season. The ribbon around each line represents the 95% confidence interval. Solitary adult occurrence is
expected to decrease with increasing road density in the spring and fall but be relatively unaffected by road density in the summer,
which is also the non-hunting season.
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Female with young habitat selection

The 250-meter buffer distance was also the best supported scale for habitat selection by
females with young. The linear features model with season as an interaction best explained
cub/yearling occurrence across the three seasons (AICw = 0.77; Table 3). Occurrence was
strongly negatively associated with roads in the reference (non-hunting) season, summer ( = -
0.66, [95% CI: -0.93 — -0.38], P < 0.001; Figure 8; Figure 9; Table 7), and this remained negative
in the spring and fall with effect sizes not different from zero (P spring = 0.08, P fall = 0.22).
Occurrence was not altered by OHV linear features in the summer (f = 0.07, [95% CI: -0.19 —
0.33], P =0.59; Figure 8; Figure 10; Table 7), however the interaction terms signalled a strong
negative association in the spring (B =-0.43, [95% CI: -0.98 — 0.12], P = 0.12) and fall ( = -

0.67, [95% CI: -1.27 — -0.06], P = 0.03).

Discussion

In support of our first hypothesis, we found that bear occurrence in relation to predictor
variables, including disturbance features, varied seasonally. Our second hypothesis was also
supported, as mothers with young responded differently to disturbance features than solitary
adults. These findings highlight the importance of considering season and demographic when
analyzing black bear habitat selection to identify fine-scale patterns that would otherwise be
missed. Although our hypotheses were supported, the relationship of occurrence to disturbance
features did not always correspond with our predictions. This will be discussed for the different

predictor categories.
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Linear features

Occurrence of both demographics was strongly influenced by linear features across
seasons. For solitary adults, roads and/or OHV linear features were consistently retained in the
top model explaining occurrence in each season, and the “linear features” model was the top
model for females with cubs.

Solitary adult bear’s seasonal association with roads was in accordance with our
prediction bears strongly avoided roads during the spring and fall, but did not avoid roads in the
summer. As roads serve as major access routes for hunters in the spring and fall hunting seasons,
road avoidance during these periods could be a risk response. This would support the findings of
Stillfried et al. (2015), who found that bears increase road avoidance during hunting seasons.
Ordiz et al. (2012) and Price et al. (2024) also found bears appear to be aware of hunting threat,
altering their behaviour to avoid hunter encounters. However, solitary adult occurrence relative
to other linear features that hunters might access via OHV did not follow the exact same pattern.
In fall, in accordance with our prediction of hunting risk aversion, bears strongly avoided
traditional seismic lines and pipelines/transmission lines. But in spring, bear occurrence was not
influenced by any of these features except a slight avoidance of seismic lines. This could be
because when forage is scarce in the spring, bears need to move about more in search of
vegetation and prey (Young and Ruff 1982), and might be more prone to use linear features for
movement subsidies despite hunting risk. In summer, we expected bears to be attracted to linear
features for forage subsidies in the absence of hunting risk. However, solitary adults were only
attracted to trails and avoided 3D seismic lines and pipelines/transmission lines. This suggests
that there could be a risk response to linear features in summer as well, perhaps to avoid

recreational vehicle activity, that outweighs any forage subsidies linear features might provide.
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Linear feature use has also been shown to be driven by fine scale characteristics such as the
presence of certain forage species and height of online vegetation (Tattersall et al. 2023b), which
we did not consider in this analysis.

Females with young strongly avoided roads in all seasons. This suggests that roads could
be perceived as risky to mothers from high human use in all seasons, despite the benefit they
may have for vegetation subsidies and as a human shield from infanticide (especially when
solitary adults are avoiding roads in the spring and fall). One explanation is that females with
young are not aware of their protection from hunting as some sources suggest (Ordiz et al. 2012,
Stillfried et al. 2015), and the risk is amplified with cubs in their protection. A review of black
bear life history traits found that hunting best explained adult female mortality, even over food
resource availability (Metthé et al. 2025). However, females with young only avoided OHV
linear features in the spring and fall, but not in the summer. If linear feature avoidance is a risk
response to hunting activity/human presence, then this change in pattern relative to road
avoidance could be explained by the fact that roads experience consistent human use in all
seasons, whereas use of OHV linear features likely is decreased or less disruptive (i.e., no
gunshots) in the summer relative to spring and fall.

Polygonal features

Wells and harvest sites did not have a strong influence on occurrence of either
demographic or were not retained in any of the top models. For solitary adults, there was no
response to these features in any season. This ran counter to our prediction that solitary adults
would avoid polygonal features during the hunting season (due to exposure) and utilize them for
forage in the summer. It is especially interesting that bears were not attracted to polygonal

features in the non-hunting season since many sources indicate these areas support berry-
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producing species (Brodeur et al. 2008, Nielsen et al. 2020), many of which are shade-intolerant,
and found bears used them for foraging (Brodeur et al. 2008, Mosnier et al. 2008, Lesmerises et
al. 2015). There was also no association with polygonal features in any season for females with
young. We came up with a several explanations that could explain this lack of relationship. First,
it is possible that across the landscape polygonal features are subject to varying levels of human
presence. This could especially be true for well pads, where some receive frequent servicing and
others are entirely abandoned. Then, bears may be utilizing polygonal features with less human
activity, and avoiding those with more activity, resulting in a net zero relationship. Second, a
management practice is to apply herbicide (ex., glyphosate) to cut blocks post-harvest, which
could reduce forage availability and quality, and is suggested as a possible reason for moose
avoiding these features (Carroll et al. 2024). Finally, it is possible that there are other areas, like
open pine stands (Pelchat and Ruff 1986), with an abundance of berries, and polygonal features
are thus not that attractive as forage sites.

Prey
Prey species presented in the top models for solitary adults in the spring and fall. In

spring, solitary adults were positively associated with all three species, and most strongly with
moose. Animal prey may serve as a more important source of calories during spring when
vegetation quality is poorer, and berries have not yet emerged (Young and Ruff 1982, Zager and
Beecham 2006). It was expected that bears would be positively associated with moose as many
sources indicate calf predation (Garneau et al. 2007, Bastille-Rousseau et al. 2011, Moore et al.
2024), especially during the period of 0 - 5 weeks of age (Moore et al. 2024). In fall, solitary
adult bears were positively associated with hare, suggesting that hare may also be of dietary
importance in this season. However, the three prey species were not present in the top model for

females with young, and even upon examining the best-supported model that included prey (the
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prey*season + linear*season model), occurrence was not influenced seasonally by these species.
It is possible that bears with young in tow are not as able to effectively hunt prey and prioritize
other food resources.
Comparing the seasons-based approach to combined seasons analysis for solitary adults

When the same model set was run across all seasons combined for solitary adults, the top
model was the prey and linear features model, with the global model coming in second (AAICc =
2.78). The high ranking of the global model indicates that in the absence of seasonal
considerations, patterns of bear occurrence are less clear. The beta coefficients of the predictor
variables in the top model also masked fine-scale seasonal patterns: for example, the model
indicates a negative association with roads, but this is not true in the summer and is more
negative than suggested in the spring and fall. Similarly, occurrence is positively related to
moose in this model, but our analysis found this to be false in the summer and fall. These
findings highlight the value of a seasonal approach to identify temporal patterns associated with

species biology that are otherwise masked.

Limitations

Several limitations of this study must be noted. First, although the error of false cub
absences was statistically addressed, it is still possible that a female was detected by a camera,
but her cubs never passed in front of the field of view. This would result in the female still being
classified incorrectly as a solitary adult. Second, due to the lack of female with young detections,
we were not able to run candidate models separately for each season. In the case of greater
detections, it would be interesting to take this approach and identify top models per season to
increase the resolution of results. Third, the strength of our conclusions is limited by the lack of

data on hunter distributions across the study area. The Alberta Open Government website has
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records of bear harvests per wildlife management unit (WMU) each year (Alberta Government
2024). However, there is no finer scale metric of where hunters concentrate efforts within each
WMU, and no quantitative data to back the assumption of linear features as a proxy for hunting
intensity. Future work could pair cameras with ARUs to monitor gunshot and OHV noise,
creating a noisescape to incorporate into the analysis of bear occurrence. Fourth, it is possible
that bear feature use could depend on whether it is the day or night. Ordiz et al. (2012)
demonstrated that after the onset of hunting, brown bears moved more during the dark hours and
reduced movement during daylight hours. It would be interesting to investigate diel activity in
relation to feature use, and if this varies seasonally. Last, although we segregated black bears by
demographic, it is likely that as generalists, there is significant individual variation in behaviour
that affects habitat use, as well as territorial boundaries that may impede habitat selection
(Latham et al. 2011a).
Conclusion

In summary, we found that black bear habitat selection in the OSR in relation to
anthropogenic disturbance features is both influenced by season and demographic and identified
better defined trends in each subcategory. Since some seasonal changes of feature avoidance
(ex., roads) appears to be linked to hunting activity, future work should incorporate a variable of
hunting effort into the analysis. Understanding black bear habitat selection in the OSR is
important to realize their spatial distributions in relation to woodland caribou, as bears are
predators of this at-risk species. Broadly, this study provides key insights into how changing
risk-reward trade-offs drives variation in habitat selection by wildlife over time and between

demographics.
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6. ENERGY INFRASTRUCTURE CLEARS THE WAY FOR COYOTES IN
ALBERTA’S OIL SANDS

Jamie F Clarke, Larissa Bron, Madison Carlson, Sophia Labiy, Zoe Penno, Hayley Webster,
Jason T Fisher, and Marissa A Dyck

OSM Summary

Oil sands development occurs against the backdrop of other macroecological changes to
boreal forest systems. Climate is changing, fire regimes are changing, and so too are some
continentally distributed mammal species, such as white-tailed deer and coyotes. Both are
neonative to the boreal forest, having expanded from southern ranges for reasons associated with
anthropogenic landscape development (and climate) but not necessarily oil sands development.
Nonetheless OS does play role in facilitating these expansions into the boreal forest, as clearly
illustrated for white-tailed deer (Fisher et al. 2020, Darlington et al. 2022, Fuller et al. 2023,
Khan et al. 2023). Coyotes may also play a large role in disrupting normal boreal predator-prey
relationships but thus far the effects of OS on coyotes have been examined as part of larger
communities (Fisher and Burton 2018, Fisher et al. 2021c). Here we dive deeper into the role
that some OS features play in coyote distribution across the OSR. We show that wide linear
features play a very strong role, as does the wholesale loss of natural landcover (mature boreal
forest canopy). Any management actions aimed to restore natural boreal forest functioning will
necessarily have to tackle coyote management, and we provide information to guide those future

decisions.

Introduction

People have profoundly changed the Earth’s surface. More than 75% of the planet’s ice-
free land has been anthropogenically modified (Ellis and Ramankutty 2008), affecting both
climate and natural life (Steffen et al. 2005). Land use change — leading to habitat loss and
fragmentation — has altered ecosystem structure and function, to the detriment of biodiversity and
biological interactions (Diaz et al. 2019, Sage 2020).

An example of land use change is Alberta’s oil sands region —a 140,000 km? stretch of

boreal forest, townsites and First Nations reserves in Nearctic Canada that sit atop one of the
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largest hydrocarbon deposits in the world. The region has undergone intensive resource
development in the last 50-plus years, with timber harvest, road infrastructure and energy
extraction significantly and rapidly altering the landscape (Schieck et al. 2014, Dabros et al.
2017). Decades of cumulative disturbance has created a landscape without historic or global
parallels (Pickell et al. 2015, Fisher and Burton 2018, Dabros and Higgins 2023).

Particularly unique is the density of anthropogenic disturbance. The boreal forest of the oil sands
region is a maze of linear (e.g., roads) and polygonal (e.g., well pads) clearings (Figure 1). Large
swaths of forest have been levelled removed for surface mining operations, with additional mines
exhausted or slated for development (Jordaan 2012). Millions more kilometres have been cleared
to locate deep petroleum deposits and service in-situ wells, creating novel patterns on the
landscape (Timoney and Lee 2001, Jordaan 2012, Roberts et al. 2022). These clearings are
mostly linear corridors, and include geo-survey (seismic) lines, pipelines, power transmission
lines and access roads. In some parts of the oil sands region, the density of seismic lines alone
was estimated to be as high as 40 km/km? (Stern et al. 2018). On some leases, grid-patterned 3D
seismic lines represent more than 10% of the surface footprint (Kansas et al. 2015).

Such intensive and extensive disturbance affects wildlife species variably. On one hand, wildlife
“winners” are able to capitalize on the movement and forage subsidies linear features (LFs)
provide (Fisher and Burton 2018, Tattersall et al. 2023a). Grey wolves (Canis lupus), for
example, show a preference for LFs, using them to travel farther and faster across challenging
boreal terrain, potentially increasing kill rates (James and Stuart-Smith 2000a, Fryxell et al.
2007, McKenzie et al. 2012, Dickie et al. 2017). Early-seral vegetation (e.g., grasses, forbs,
browse) planted or regrowing along LFs supports non-native, range-expanding white-tailed deer,
improving survival and supporting population growth (Dawe et al. 2014, Darlington et al. 2022).
Wildlife “losers,” on the other hand, struggle under the pressures of forest conversion and
hyperconnectivity (Fisher and Burton 2018). The mature, undisturbed forests that threatened-
status woodland caribou (Rangifer tarandus caribou) rely on for shelter and forage are being
fragmented by oil and gas development (Boutin et al. 2012, Lesmerises et al. 2013), with LFs
increasing predators’ access to caribou habitat (Latham et al. 2011b, Whittington et al. 2011,
Demars and Boutin 2018) and potentially shifting caribou distribution (Nellemann et al. 2001).
The influence of energy infrastructure on another member of the oil sands mammal community —

the coyote (Canis latrans) — is not as well understood. Coyotes are relative newcomers to
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northeastern Alberta, having dramatically extended their range in the 20 century to become the
most widely distributed Canis species in North America (Hody and Kays 2018, Ward et al.
2018).

In the western boreal forest, evidence suggests coyotes prefer disturbed sites and
landscapes (Barnas et al. 2024b), and particularly areas of high LF density — potentially using
them as movement corridors — like wolves do (Fisher and Burton 2018, Toews et al. 2018,
Tattersall et al. 2020a). Yet, the kinds of LFs coyotes select for is unclear. Also of interest is the
interplay between energy infrastructure and coyotes’ interspecific interactions. The increased
connectivity and permeability LFs provide (Dickie et al. 2017), coupled with coyotes’ recent
expansion into and success in the region (Burgar et al. 2019), could have important consequences
on other species’ behaviour and distribution (Heim et al. 2017, Lendrum et al. 2018, Mumma et
al. 2019, Chow-Fraser et al. 2022, Fisher and Ladle 2022b, Boczulak et al. 2023).

To better understand which kinds LFs coyotes are using in the oil sands region — and how
predation and competition influence coyote LF use — we used camera trapping (O'Connell et al.
2011, Burton et al. 2015b) to measure coyote relative abundance across six landscapes with
different degrees of development western boreal forest. Generalized linear models informed by
these data, employed an information-theoretic approach, weighed evidence for additive and
interactive models representing several competing hypotheses, sensu Burnham and Anderson
(2002a). We hypothesized that coyote occurrence would 1) increase with LF density; 2) increase
with increasing relative abundance of large and small herbivores, as coyote prey species; and 3)
decrease with increasing relative abundance of wolves and bears as coyote competitor species.
We predicted that coyote occurrence would increase with LF density since LFs provide
movement subsidies for canids (Dickie et al. 2017) and forage subsidies for herbivore prey
(Finnegan et al. 2019, Wittische et al. 2021b, Darlington et al. 2022). We further predicted that
coyote occurrence would increase with higher relative abundance of prey species and decrease
with higher relative abundance of competitor species, as coyotes would frequent prey-rich areas

but avoid overlap with competitors (Ballard et al. 2003).

Methods
Study Area
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Our study frame was the vast portion of the western boreal forest known as the western
sedimentary basin (Porter et al. 1982), and within this frame our study extent was Canada’s oil
sands region, in northeastern Alberta. The region’s topography is flat-to-undulating and is
composed of upland forests — filled with white pine (Picea glauca), black spruce (Picea
mariana), trembling aspen (Populus tremuloides) and jack pine (Pinus banksiana) — and
Labrador tea- (Rhododendron groenlandicum) dominated lowland muskegs. Winters are
typically long and cold, and summers short and warm; mean temperature of the coldest month is
about -19° C, and 16° C in the hottest month, with about 450 mm of annual precipitation
(Downing and Pettapiece 2006). The boreal forest supports a diversity of mammal species,
including wolves, coyotes, lynx (Lynx canadensis), red foxes (Vulpes vulpes), black bear (Ursus
americanus), fishers (Pekania pennanti), wolverines (Gulo gulo), martens (Martes americana),
woodland caribou, moose (A4/ces alces) and white-tailed deer (Odocoileus virginianus).

This research was conducted under the joint Canada-Alberta Oil Sands Monitoring
program (Roberts et al. 2022). The study design for this program divides the region into ~1,000
km? landscape units (LUs) based on hydrological boundaries, with each representing a differing
degree of cumulative development from forestry, roading, and oil and gas exploration and
extraction (Bayne et al. 2021b). LUs were characterized as 1) currently developed for in-situ or
mine extraction, 2) proposed for in-situ development or mine site, or 3) low disturbance
reference site (Bayne et al. 2021b). A subset of LUs representing all three disturbance levels
were selected for this project.

Sampling Design

A total of 233 Reconyx Hyperfire 2X camera traps (Reconyx, Homen, WI) were
deployed in six LUs (Figure 2): one mine site, one proposed in-situ site, two active in-situ sites
and two low-disturbance sites. Camera traps were deployed using a constrained stratified
sampling design. Each LU was divided into 60 2-km? hexagonal cells using ArcGIS (version
10.3); cells were then categorized as upland (> 50% deciduous) or lowland (> 50% wet
coniferous) forest. About 40 cells (actual range: 36-42) were selected for camera trap
deployment, with forest types represented roughly equally. We chose a constrained stratified
design to control for natural variability, to tease out the effects of industrial development on

mammal communities.
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In each selected cell, a was deployed at least 100 m from roads or trails and 1 km from
other camera stations. Cameras were set about 0.5 m off the ground and pointing down a well-
used wildlife trail. Ca. 40 mL of scent lure (Long Distance Call, O’Gorman’s, MT) was spread
on a tree within each camera’s viewshed. Our design maximizes accessibility and probability of
medium-to-large mammal detections while maintaining site independence (Diniz-Filho et al.
2003, Hawkins et al. 2007). Cameras were set to take 1 image per motion sensor trigger to
prolong battery life and storage capabilities. 78 cameras were set across two LUs from October
2021-2022 and 155 were set across four LUs from fall 2022-2023, for a maximum duration of 13

months per camera trap.
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Figure 1. Aerial depiction of oil sands disturbances, including industrial facilities (large
polygons), well pads (squares), roads (wide lines), conventional seismic lines (straight narrow

lines) and 3D seismic lines (crosshatched, wavy lines). By Scott Heckbert.
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Figure 2. Map of camera trap deployments across 6 LUs (light polygons) in the oil sands region
of Alberta. Red dots represent cameras active 2021-2022 (n = 93); blue dots represent cameras
active 2022-2023 (n = 155). Grey lines show road networks, including unpaved roads. Inset: map
of Canada, with Alberta in light grey and the study area enclosed in the black box.

Defining Variables

Diet studies show that coyotes mostly consume small mammals, ungulates, vegetation,
and anthropogenic “by-catch” like pets and livestock (Todd et al. 1981, Lukasik and Alexander
2012, Shi et al. 2021, Jensen et al. 2022, Hayward et al. 2023). Analyses of coyote scat from
Alberta indicate that snowshoe hares, rodents and ungulates are some of the most important food
sources for coyotes in the region (Todd et al. 1981, Murray et al. 2015). Although deer and
moose are coyotes’ preferred ungulate prey, there have also been reports of “spill-over”

predation on caribou (Boisjoly et al. 2010, Latham et al. 2011c). We therefore considered
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snowshoe hares, red squirrels, white-tailed deer, caribou and moose as potential coyote prey
species in our analyses.

Interspecific competition is challenging to quantify (Murray et al. 2023), but there is
some evidence of interference and exploitative competition between coyotes and felids,
mustelids and other canids. Coyotes share prey species — including snowshoe hares — with lynx,
for example (Ruggiero 1994, Krebs et al. 2001b). Coyotes and cougars also minimize spatial and
temporal overlap to reduce conflict (Jensen et al. 2024). LFs increase competition between
coyotes and wolverines (Chow-Fraser et al. 2022), while fishers and coyotes both preferentially
prey on small mammals (Weir et al. 2005). Similarly, coyotes appear to be limited by
competition with grey wolves (Berger and Gese 2007). We therefore classified lynx, cougars,
wolverines, fishers and wolves as competitor species.

For interaction models: we chose the single prey and competitor species we believed
exerted the most influence on coyote occurrence, given previous findings. We selected snowshoe
hares as the main prey species, as lagomorphs are a key component of coyote diet (Prugh 2005,
Shi et al. 2021, Hayward et al. 2023), especially in their boreal range (Todd et al. 1981) where
they overlap with wolves (Petroelje et al. 2021). Likewise, we selected wolves as the main
competitor species. Wolves are competitively dominant to coyotes (Merkle et al. 2009),
harassing and sometimes killing coyotes in areas of high wolf-use and density (Miller et al. 2012,
Flagel et al. 2017). Other competitor species (e.g., lynx) do not appear to compete as directly or
intensely.

Coyotes are expected to spatially distribute relative to available natural resources, proxied
by habitat measure using hyperspectral imagery. To quantify natural boreal heterogeneity,
landscape data were derived from the Alberta Biodiversity Monitoring Institute’s wall-to-wall
landcover map (Alberta Biodiversity Monitoring Institute 2024). Landscape features within a
4,750 m radius of each camera station were considered, since it was the top-performing buffer
distance for coyotes in anthropogenically-disturbed areas (Dyck et al., in prep). To avoid
overparameterization in our models, and given coyotes are habitat generalists, we grouped
natural landcover variables (grasslands, shrubland, and coniferous/broadleaf/mixed forest) into a

single covariate (Mastro et al. 2019, Petroelje et al. 2021).
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Model Framework

432,391 images (including blanks) were captured across the entire study. Of these,
184,985 were images of mammals (excluding people and domestic dogs). Image data was
processed by trained technicians using Timelapse software (Greenberg and Godin 2012), with
images of the same species captured within 30-minute intervals grouped into independent
detections, not corrected for camera activity. Independent detections of coyotes were also used to
calculate monthly occurrence (hereafter, occurrence) of coyotes at every camera site. Only
cameras with > 15 operational days per month were used to calculate coyote occurrence, to
account for occasional camera failures (Fisher and Ladle 2022b). The response metric was thus
the number of months a coyote was detected, and the number of months a coyote was not
detected, to inform a proportional binomial model wherein each month is a Bernoulli trial
(Crawley 2012, Faraway 2016). Here we considered a zero as a true zero and not partitioned as
error, as is the case with occupancy models (MacKenzie et al. 2002) — if we do not detect a
coyote in a month on a lured wildlife trail we are confident of its absence.

We carried out a two-step model selection to 1) explore which LFs to include in analyses
and 2) test our hypotheses on coyote occurrence. In step 1, we competed different groupings of
LFs (Table S1). In step 2, we tested the effects of LFs, natural landcover, and independent prey
and competitor detections — including interactions between prey and competitor species and LFs
— on coyote occurrence. We used a generalized linear mixed model (GLMM) framework with a
binomial distribution, and set LU as a random effect, for all analyses, such that:

Nn=PFo+ Pr*Xs+ Po*xXo++Pp*xXy+ 7
where 77 is the linear predictor, S, is the intercept, ,, * X,, is a covariate of interest and 7 is a
random effect. The link function,
logit(6) = n
was used to predict the effect of covariates on coyote occurrence. Coyote occurrence was
assumed to follow a Bernoulli distribution,
monthly coyote occurrence ~ Bernoulli(6)
whereby each month was considered an independent “trial” and coyotes were either detected (1)
or not (0), with each camera site considered a unique replication (Fisher and Ladle 2022b). We
included LU as a random effect to account for inherent variability between sampling sites

(Supplementary Information). LU was assumed to follow a normal distribution, such that
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532 LU ~ Normal(0, 62).

533  Models were constructed using the /me4 package (Bates et al. 2024) and ranked using the Akaike
534  Information Criterion (AIC; Akaike 1973) using the MuMIn package (Barton 2024) in R (version
535  4.3.2). The best-supported models had the lowest AIC scores by A AIC of > 2 (Burnham and

536  Anderson 2002a). Variables were scaled for standardized comparison between estimated model
537  coefficients.

538 Before modelling, we tested multicollinearity between covariates using pairwise Pearson
539  and Spearman’s correlation tests. Covariates with a correlation coefficient (1) > 0.6 were not

540 included in the same models. We then calculated variance inflation factor (VIF) in the package
541  car (Fox et al. 2019) to test for collinearity between covariates in our best fit model. VIFs report
542  how much of a given covariate’s variability is explained by other covariates, owing to correlation
543  (Craney and Surles 2002). A VIF value of 1 indicates no correlation, with larger values (e.g., >
544  5)signalling severe correlation.

545

546  Results

547  Mammal detections

548 Camera images generated 15,944 total independent detections of 10 focal species. The
549  most-detected species was white-tailed deer (6,143), followed by snowshoe hare (4,572), red

550  squirrel (2,200), coyote (1,319), moose (696), lynx (526), fisher (262) and grey wolf (226).

551  Caribou, cougars and wolverines had too few detections (115, 37 and 0, respectively) to carry
552  forward into analyses. Coyotes were detected at 172 of 233 sampling sites (74%).

553

554  Model Selection

555 In step1, the wide LF model — which grouped LFs > 5 m in width — was top performing
556  (AICc =980.4, A AICc =2.04, weight = 0.58; Table 1). The difference in AIC scores between
557  the best-performing model (wide LFs) and second-best performing model (all LFs) was > 2,
558 indicating support for the top model (Burnham and Anderson 2002a, Burnham et al. 2011). Of
559 the three wide LF types, roads had the strongest positive effect on coyote occurrence (f =

560 0.58612 £ 0.05940, p < 0.001), with conventional seismic lines also having a positive — but
561  slightly weaker — influence (f = 0.18439 + 0.07357, p = 0.0122). Transmission lines had a
562  negligible effect on coyote occurrence (f = 0.01404 £+ 0.06007, p = 0.8152).
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In step 2: the global model, which included terms for natural landcover, wide LFs, and
prey and competitor species, best predicted coyote occurrence (AICc =921.9, A AICc = 2.09,
weight = 0.74; Table 2). The global model with interactions terms was the second-best
performing. VIF values for all top model covariates were near 1, indicating little collinearity.

The proportion of wide LFs on the landscape retained a strong positive effect on coyote
occurrence (ff = 0.49669 £ 0.06965, p < 0.001), additive to detections of small prey snowshoe
hares (f = 0.18827 £0.04769, p < 0.001), and competitors grey wolves (f = 0.18952 + 0.05059,
p <0.001) and lynx (f =0.16876 £ 0.05007, p < 0.001). The odds of coyote occurrence at a
camera site increased by 64% per 1% increase in the proportion of wide LFs (Figure 3, 4).
Likewise, the likelihood of coyote occurrence increased by 10% for each snowshoe hare
detection; 9% for each grey wolf detection; and 7% for each lynx detection. Total white-tailed
deer and red squirrel detections also had a positive relationship with coyote occurrence, but
effective size was smaller (white-tailed deer: f = 0.06411 £ 0.06531, p = 0.326270; red squirrel:
B =0.08085 £+ 0.04686, p = 0.084450). The area of grouped natural landcover was the only
covariate to have a clear negative effect on coyote occurrence (f = -0.40375 + 0.05459, p <
0.001), with odds of occurrence decreasing by 60% per 1% increase in natural feature coverage.
Total moose detections had a slight negative relationship, but again, effect size was small (f = -
0.06344 + 0.05739, p = 0.268944). Fishers had a negligible influence on coyote occurrence (ff =
0.01794 £+ 0.05042, p = 0.722021).
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Figure 3. Odds ratio plot for the global model showing the effects of natural landcover and wide
linear feature density (green box), and of total competitor (blue box) and prey (red box) species

detections, on monthly coyote occurrence. Points represent exponentiated model coefficients;
bars represent 97.5% confidence intervals.
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Figure 4. Proportion of natural landcover and wide LFs near camera trap sites, and total
detections of prey and competitor species, influence monthly coyote occurrence. Lines represent
the predicted relationship between coyote occurrence and covariates + 95% confidence intervals.
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Table 1. Step 1: GLMMs predicting monthly coyote occurrence given LF types. Models are
ranked from most-to-least supported. Model statistics include degrees of freedom (df), logistical
likelihood (logLik), Akaike information criterion score corrected for small sample size (AICc),
difference in AICc score from the best-supported model (A AICc) and explanatory value of each
model (AICc weight).

model covariates df logLik AlCc A AICc

AICc
weight

wide LFs | roads tseismiclines+ | o jo0 | g0y 0 0.58
transmission lines

roads + seismic lines +

global model | 3D seismic lines + trails | 7 -484.0 982.5 2.04 0.21
+ transmission lines
“nveLgFegated roads 3| 4882 | 9825 2.05 0.21
seismic lines + 3D
vegetated seismic hne.s+- trails + 6 5778 1068.0 27 53 0
LFs transmission
lines
narrow LFs | 3D seismic lines + trails 4 -533.2 1074.5 94.09 0
pipelines pipelines 3 -534.3 1074.8 94.34 0
null -— 2 -537.3 1078.6 98.13 0

Table 2. Step 2: GLMMs predicting monthly coyote occurrence given proportion of landcover
and wide linear features, and total detections of prey and competitor species. Models are ranked
from most-to-least supported. Model statistics include degrees of freedom (df), logistical
likelihood (logLik), Akaike information criterion score corrected for small sample size (AICc),
difference in AICc score from the best-supported model (A AICc) and explanatory value of each
model (AICc weight).

AlICc

model covariates df | logLik AlCc A AICce .
weight

natural landcover + wide
LFs + red squirrel +
snowshoe hare + white-
global tailed deer + moose - 11 -449.3 921.9 0 0.74
fisher + lynx + grey

wolf

natural landcover + red
squirrel + white-tailed
deer + moose + fisher +

intgelr(;?;lon lynx + 13 | -448.2 924 2.09 0.26
wide LFs*snowshoe
hare + wide LFs*grey
wolf

competitor natural landcover + wide

7 -461.3 937.1 15.25 0

species, natural | LFs + fisher + lynx +
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landcover and

grey wolf

wide LFs
global natural landcover +
competitor fisher + lynx + -460.7 938.1 16.2 0
interaction wide LFs*grey wolf
natural landcover + red
lobal pr squirrel + white-tailed
S oy | deer + moose + 4610 | 9408 | 18.95 0
wide LFs*snowshoe
hare
prey species, | natural landcover + wide
natural LFs + red squirrel +
landcover and | snowshoe hare + white- -146.2 o4l 19.12 0
wide LFs tailed deer + moose
natural .
landcover and | "atural landeover +wide 4790 | 9662 | 4434 0
. LFs
wide LFs
. natural landcover + red
prey species and squirrel + snowshoe
natural q SHow -480.9 | 9762 | 5433 0
landcover hare + white-tailed deer
+ moose
Sco;l;p:;t;tgg natural landcover +
pnatural fisher + lynx + grey -489.1 990.5 68.62 0
landcover wolf
wide LFs + red squirrel
prey species and | + snowshoe hare + i
wide LFs white-tailed deer + 489.9 994.3 7244 0
moose
red squirrel + white-
. . tailed deer + moose +
prey interaction wide LFs*snowshoe -489.4 995.5 73.61 0
hare
competitor .
species and | 19 LS fisher +lyn 4923 | 9969 | 75.01 0
wide LFs * grey wo
competitor fisher + lynx + ]
interaction wide LFs*grey wolf 491.7 9978 7591 0
laﬁ‘jﬁr natural landcover -503.7 | 1013.6 | 91.69 0
red squirrel + snowshoe
prey species | hare + white-tailed deer -512.2 1036.8 114.89 0
+ moose
competitor fisher + lynx + grey 5226 1055.5 133.63 0
species wolf
null --- -537.3 1078.6 156.69 0
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Discussion

Range-expanding coyotes occur across the Canadian oil sands region of the western
boreal forest, and anthropogenic linear features are paving the way. Across multiple landscapes
spanning a gradient of disturbance, coyote relative abundance was much higher with high density
of wide linear features, and much lower in natural landscapes. Contrary to expectations, coyotes
did not avoid competitors, but rather clustered with them in space where prey abundance was
high. The prevalence of wide LFs within 4,750 m of a camera site had the strongest positive
effect on coyote occurrence, while proportion of natural landcover had the strongest negative
effect. Total grey wolf, lynx and snowshoe hare detections had a positive, but smaller, signal.
These findings lend support to our hypotheses that coyote occurrence is positively related to LF
density and prey species relative abundance, but did not support our hypothesis that coyotes
would avoid overlap with competitor species.

Wide LFs — especially roads and seismic lines — had the largest positive effect on coyote
occurrence. Coyotes may have selected areas of high wide LF density because these corridors are
long, straight and unobstructed, maximizing travel speed, distance covered and line-of-sight for
movement and hunting compared to narrow LFs or forest patches (Dickie et al. 2017). Our
findings are in line with other studies from the oil sands region linking coyotes and wide LFs
(Skatter et al. 2020, Beirne et al. 2021a), and particularly roads (Fisher and Burton 2018, Fisher
and Ladle 2022b). Many roads within the oil sands region are low-traffic access routes, with less
road-use risk (Van Scoyoc et al. 2024) to weigh against the benefits of roadside hunting and
scavenging, and easy movement.

Importantly, the wide LF model (which included roads, seismic lines and transmission
lines) outperformed the road-only LF model, indicating seismic lines’ importance (the effect of
transmission lines was negligible). Roads had the strongest predictive effect on coyote
occurrence but seismic lines the second-strongest, suggesting they could provide alternate or
additive pathways to roads — which bring wildlife into closer contact with people and increase
chances of vehicle strikes (reviewed in Coffin 2007). Coyotes may also exploit seismic lines
simply because they are much more pervasive than roads. Within our study LUs and site buffer
radius, seismic lines had a mean proportional coverage of 0.7% compared to 0.4% for roads;

moreover, seismic lines were represented within-buffer-radius for 99% of camera sites versus
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87% for roads. Coyotes may therefore select seismic lines as a “second choice” LF because they
are structurally similar (e.g., unobstructed, straight) and abundant.

Coyote occurrence was negatively related to the proportion of natural landcover. The
boreal forest is difficult for wildlife to move through, with dense trees, fallen woody debris
(Hansson 1992) and bogs. Cleared and compacted LFs increase movement rates for hunting,
monitoring, communication and travel through this otherwise challenging landscape (Dickie et
al. 2017). Even given the choice between natural (e.g., waterways) and disturbed corridors,
canids have been shown to select human-made LFs, especially as anthropogenic LF density
increases (Newton et al. 2017). LFs likely represent the least-cost path for coyotes, versus
relatively movement-resistant natural landcover (Sawyer et al. 2011).

Contrary to our last hypothesis, coyotes co-occurred with competitor species —
particularly grey wolves and lynx. One potential explanation is that coyotes aggregate near
competitors to feed on their kills (Paquet 1992, Wilmers et al. 2003). Coyotes are facultative
scavengers (Walker et al. 2021) that have been shown to consume more carcasses when wolves
are on the landscape (Switalski 2003, Atwood and Gese 2008). The strong predictive signal of
wolf detections on coyote occurrence, coupled with the knowledge that LFs may improve
predation rates for wolves (Messier and Créte 1985, Fryxell et al. 2007, Dickie et al. 2017),
could indicate a higher number of wolf kills and subsequently more scavenging by coyotes.

The outcomes of wolf-coyote competitive interactions also depend on group size. Wolves
are considered to be the dominant canid (Levi and Wilmers 2012), with many documented cases
of wolves killing coyotes in direct competition (see Mech and Boitani 2019). Wolves can,
however, can be overrun or harassed by coyotes when outnumbered (Merkle et al. 2009). In
some parts of the oil sands region, coyote density is triple that of wolves (Burgar et al. 2019),
and wolf culls for caribou recovery can further reduce wolf population sizes (Hervieux et al.
2014, Grente et al. 2024). Thus, coyotes may be abundant enough in our study area to reduce
interference competition with wolves. Coyotes often choose to scavenge on wolf kills, despite
the potential risks (Paquet 1992); taken together, our findings could suggest that trade-off is
further skewed in the oil sands, where coyotes can outnumber wolves, altering dominance
structures and potentially resulting in high rates of scavenging and spatial overlap.

Interacting species must partition time, space or resources to coexist (Schoener 1974). An

alternative interpretation of overlapping detections, then, is that coyotes and their competitors
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partition prey species instead of locking in a “space race” (Muhly et al. 2011). Coyotes and
wolves do not typically compete for live prey (Arjo and Pletscher 2000, Arjo et al. 2002):
coyotes tend to hunt smaller species (e.g., lagomorphs and rodents; Murray et al. 2015, Hayward
et al. 2023) or weaker ungulates (e.g., fawns/calves and adults in poor condition; see Gese and
Grothe 1995) while wolves take large ungulates (deer, elk, moose and caribou; Newsome et al.
2016). This could explain why ungulate detections only weakly influence coyote occurrence:
coyotes in the oil sands do not seem to predate on ungulates often, instead consuming small
mammals and scavenging on wolves’ ungulate kills (Todd and Keith 1983).

Snowshoe hares had a clear, positive influence on coyote occurrence, further suggesting
that they are in important coyote prey species in the boreal (Todd et al. 1981, O’Donoghue et al.
1998). Lynx and coyote diets could therefore considerably overlap in the oil sands region. To
promote spatial overlap, these competitors may consume different proportions of hares (Hinton
et al. 2017), or hare density may be high enough to support both species. To the first point:
coyotes and lynx can prey on other species (e.g., voles and red squirrels) when snowshoe hare
cycles dip (O’Donoghue et al. 1998). To the second point: the hare cycle was likely near its 10-
year peak during our sampling period (Skatter et al. 2020). Estimates of peak hare density in the
Yukon and Alaska have been as high as 300 to 1,000 hares/km? (Ward and Krebs 1985, Slough
and Mowat 1996, Krebs et al. 2001a). Lynx eat roughly two snowshoe hares every three days
when they are plentiful (Government of Northwest Territories); if hare densities were similar to
northern estimates during our camera trap study, competition for food resources may have been
minimal.

Still unknown in this system are coyotes’ impacts on endangered caribou. Spillover
predation, facilitated by hyper-connective LFs (Mumma et al. 2018) and higher coyote
populations, has been posited. Indeed, facultative, disturbance mediated coyote-caribou
predation is likely in an eastern boreal ecosystem (Boisjoly et al. 2010). Our results do not
suggest that ungulates were an important predictor of coyote occurrence during the study period,
and by extension that caribou would be a strong predictor. It is, however, possible that coyote
diet could shift towards ungulates — including caribou — in low-hare years. Previous analyses
have shown that ungulates, including deer and moose, can comprise % to 72 of coyote diet
(Boisjoly et al. 2010, Murray et al. 2015, Shi et al. 2021). Further investigation into patterns of

coyote predation throughout the hare cycle could elucidate the relationship between coyotes and
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endangered caribou and clarify management priorities. It is worth noting that too few caribou
detections were collected to make direct inferences from our dataset.

Future research could also investigate the nuances of coyote LF use throughout the year.
Wolves have been shown to exert seasonal preferences for LF type (Dickie et al. 2017) and
weaker selection for LFs during the wintertime (Latham et al. 2011b); similar patterns in coyotes
may have been masked by the coarseness of our work. Likewise, overlap with prey species could
change seasonally. Other canids tend to consume prey of different sizes during alternating
seasons (Latham et al. 2011e), meaning ungulates could be a better predictor of coyote
occurrence at finer time scales. Ungulates could better-predict coyote occurrence during ungulate
calving, when they are more vulnerable to coyote attacks, as well.

The best-supported buffer size for coyotes in disturbed landscapes resulted in substantial
overlap using our sampling design (Chapter 4), which may prompt concerns about
pseudoreplication (the treatment of non-independent variables as independent; Whitlock and
Schluter 2015). As per Hurlbert (1984), however, independent detections can be influenced by
the same predictor variable values without being pseudoreplicated; more important is sound
sampling design that accounts for systematic variability (Zuckerberg et al. 2020a). We stratified
sampling design at two levels for our study (LU, camera site) to account for natural variability
and to parse out the effects of industrial disturbance.

It is possible that the effect of roads was artificially inflated, since most cameras were
deployed ~100 m from the nearest road. The topography of Alberta’s oil sands region has
changed drastically under the compounding pressures of industry. LFs created for forestry and
energy extraction have fragmented the boreal forest, creating matrices of treed patches connected
by networks of cleared corridors (Pattison et al. 2016). What was previously good habitat for
moose, caribou and lynx has given way to landscapes that support generalist, range-expanding
species like coyotes and white-tailed deer, fundamentally the changing distribution and relative
abundance of mammal populations (Fisher and Burton 2018).

LFs have outsized effects on wildlife ecology (e.g., Trombulak and Frissell 2000,
Whittington et al. 2005, Ibisch et al. 2016); in the oil sands, where LF density is high (Komers
and Stanojevic 2013, Stern et al. 2018), that effect is even more pronounced, influencing
mammals and birds (Lankau et al. 2013, Fisher and Burton 2018, Darling et al. 2019), vegetation

community composition and regeneration (van Rensen et al. 2015, Dabros et al. 2017), and
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interspecific relationships (Heim et al. 2017, Lendrum et al. 2018, Mumma et al. 2019, Chow-
Fraser et al. 2022, Fisher and Ladle 2022b, Boczulak et al. 2023). That anthropogenic
disturbance is believed to have a bigger role in the spatial distribution of mammals than natural
ecological processes (Fisher and Ladle 2022b). With thousands of kilometres of new linear
corridors cleared each year (Komers and Stanojevic 2013), a holistic understanding of wildlife
LF use is therefore critical for management and conservation (Latham et al. 2011b, Newton et al.
2017, Finnegan et al. 2023, Benoit-Pépin et al. 2024).

Alberta’s oil sands are the harbinger of a new hydrocarbon age. Global sources of
conventional oil are being depleted (Bentley 2002) and interest retrained on “unconventional” oil
sands deposits — resources that sit beneath thousands of square kilometres of forest (Rosa et al.
2017). Regions considering oil sands development should look to Canada’s north to better
understand how LFs influence wildlife species and interactions and weigh the ecological costs of

energy extraction and habitat restoration with economic benefits.

References

Akaike, H. 1973. Maximum likelihood identification of Gaussian autoregressive moving average
models. Biometrika 60:255-265.

Arjo, W. M., and D. H. Pletscher. 2000. Behavioral responses of coyotes to wolf recolonization
in northwestern Montana. Canadian Journal of Zoology 77:1919-1927.

Arjo, W. M., D. H. Pletscher, and R. R. Ream. 2002. Dietary overlap between wolves and
coyotes in northwestern Montana. Journal of Mammalogy 83:754-766.

Atwood, T. C., and E. M. Gese. 2008. Coyotes and recolonizing wolves: social rank mediates
risk-conditional behaviour at ungulate carcasses. Animal Behaviour 75:753-762.

Ballard, W. B., L. N. Carbyn, and D. W. Smith. 2003. Wolf interactions with non-prey.

Barnas, A. F., A. Ladle, J. M. Burgar, A. C. Burton, M. S. Boyce, L. Eliuk, F. Grey, N. Heim, J.
Paczkowski, and F. E. Stewart. 2024. How landscape traits affect boreal mammal
responses to anthropogenic disturbance. Science of the Total Environment 915:169285.

Barton, K. 2024. R package “MuMIn”.

Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, F.
Scheipl, G. Grothendieck, P. Green, J. Fox, A. Bauer, P. N. Krivitsky, E. Tanaka, and M.
Jagan. 2024. R package “lme4”.

109



765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

Bayne, E., J. Dennett, J. Dooley, M. Kohler, J. Ball, M. Bidwell, A. Braid, J. Chetelat, E.
Dilligeard, D. Farr, J. T. Fisher, M. Freemark, K. R. Foster, C. Godwin, C. E. Hebert, D. J.
Huggard, D. Mclssac, T. Narwani, S. E. Nielsen, B. Pauli, S. Prasad, D. R. Roberts, S.
Slater, S. J. Song, S. Swanson, P. J. Thomas, J. D. Toms, C. Twitchell, S. R. White, F.
Whyatt, and L. Mundy. 2021. Oil Sands Monitoring Program: A Before-After Dose-
Response Terrestrial Biological Monitoring Framework for the Oil Sands. (OSM Technical
Report Series No. 7). Edmonton, Alberta.

Beirne, C., C. Sun, E. R. Tattersall, J. M. Burgar, J. T. Fisher, and A. C. Burton. 2021.
Multispecies modelling reveals potential for habitat restoration to re-establish boreal
vertebrate community dynamics. Journal of Applied Ecology 58:2821-2832.

Benoit-Pépin, A., M. J. Feldman, L. Imbeau, and O. Valeria. 2024. Use of linear features by
mammal predators and prey in managed boreal forests. Forest Ecology and Management
561:121911.

Bentley, R. W. 2002. Global oil & gas depletion: an overview. Energy Policy 30:189-205.

Berger, K. M., and E. M. Gese. 2007. Does interference competition with wolves limit the
distribution and abundance of coyotes? Journal of Animal Ecology 76:1075-1085.

Boczulak, H., N. P. Boucher, A. Ladle, M. S. Boyce, and J. T. Fisher. 2023. Industrial
development alters wolf spatial distribution mediated by prey availability. Ecology and
Evolution 13:¢10224.

Boisjoly, D., J. P. OUELLET, and R. Courtois. 2010. Coyote habitat selection and management
implications for the Gaspésie caribou. The Journal of Wildlife Management 74:3-11.

Boutin, S., M. S. Boyce, M. Hebblewhite, D. Hervieux, K. H. Knopff, A. D. M. Latham, M. C.
Latham, J. Nagy, D. R. Seip, and R. Serrouya. 2012. Why are caribou declining in the oil
sands? Frontiers in Ecology and the Environment 10:65-67.

Burgar, J. M., A. C. Burton, and J. T. Fisher. 2019. The importance of considering multiple
interacting species for conservation of species at risk. Conservation Biology 33:709-715.

Burnham, K., and D. Anderson. 2002. Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach 2nd EditionSpringer-Verlag. New York, New York.

Burnham, K. P., D. R. Anderson, and K. P. Huyvaert. 2011. AIC model selection and
multimodel inference in behavioral ecology: some background, observations, and

comparisons. Behavioral Ecology and Sociobiology 65:23-35.

110



796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

Burton, A. C., E. Neilson, D. Moreira, A. Ladle, R. Steenweg, J. T. Fisher, E. Bayne, and S.
Boutin. 2015. Wildlife camera trapping: a review and recommendations for linking surveys
to ecological processes. Journal of Applied Ecology 52:675-685.

Chow-Fraser, G., N. Heim, J. Paczkowski, J. P. Volpe, and J. T. Fisher. 2022. Landscape change
shifts competitive dynamics between declining, at-risk wolverines and range-expanding
coyotes, compelling a new conservation focus. Biological Conservation 266.

Coffin, A. W. 2007. From roadkill to road ecology: A review of the ecological effects of roads.
Journal of transport Geography 15:396-406.

Craney, T. A., and J. G. Surles. 2002. Model-dependent variance inflation factor cutoff values.
Quality engineering 14:391-403.

Crawley, M. J. 2012. The R book. John Wiley & Sons.

Dabros, A., H. J. Hammond, J. Pinzon, B. Pinno, and D. Langor. 2017. Edge influence of low-
impact seismic lines for oil exploration on upland forest vegetation in northern Alberta
(Canada). Forest Ecology and Management 400:278-288.

Dabros, A., and K. L. Higgins. 2023. Vegetation recovery and edge effects of low impact seismic
lines over eight-year period in boreal uplands of northern Alberta. Forest Ecology and
Management 532:120850.

Darling, A. F., L. Leston, and E. M. Bayne. 2019. Small-mammal abundance differs between
pipelines, edges, and interior boreal forest habitat. Canadian Journal of Zoology 97:880-
894.

Darlington, S., A. Ladle, A. C. Burton, J. P. Volpe, and J. T. Fisher. 2022. Cumulative effects of
human footprint, natural features and predation risk best predict seasonal resource selection
by white-tailed deer. Scientific Reports 12:1-12.

Dawe, K., E. Bayne, and S. Boutin. 2014. Influence of climate and human land use on the
distribution of white-tailed deer (Odocoileus virginianus) in the western boreal forest.
Canadian Journal of Zoology 92:353-363.

DeMars, C. A., and S. Boutin. 2018. Nowhere to hide: Effects of linear features on predator—prey
dynamics in a large mammal system. Journal of Animal Ecology 87:274-284.

Diaz, S., J. Settele, E. S. Brondizio, H. T. Ngo, J. Agard, A. Arneth, P. Balvanera, K. A.
Brauman, S. H. Butchart, and K. M. Chan. 2019. Pervasive human-driven decline of life on

Earth points to the need for transformative change. Science 366:eaax3100.

111



827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857

Dickie, M., R. Serrouya, R. S. McNay, and S. Boutin. 2017. Faster and farther: wolf movement
on linear features and implications for hunting behaviour. Journal of Applied Ecology
54:253-263.

Diniz-Filho, J. A. F., L. M. Bini, and B. A. Hawkins. 2003. Spatial autocorrelation and red
herrings in geographical ecology. Global Ecology and Biogeography 12:53-64.

Downing, D. J., and W. W. Pettapiece. 2006. Natural Regions and Subregions of Alberta.
Government of Alberta, Natural Regions Committee.

Ellis, E. C., and N. Ramankutty. 2008. Putting people in the map: anthropogenic biomes of the
world. Frontiers in Ecology and the Environment 6:439-447.

Faraway, J. J. 2016. Extending the linear model with R: generalized linear, mixed effects and
nonparametric regression models. Chapman and Hall/CRC.

Finnegan, L., M. Hebblewhite, and K. E. Pigeon. 2023. Whose line is it anyway? Moose (Alces
alces) response to linear features. Ecosphere 14:¢4636.

Finnegan, L., K. E. Pigeon, and D. MacNearney. 2019. Predicting patterns of vegetation
recovery on seismic lines: Informing restoration based on understory species composition
and growth. Forest Ecology and Management 446:175-192.

Fisher, J. T., and A. C. Burton. 2018. Wildlife winners and losers in an oil sands landscape.
Frontiers in Ecology and the Environment 16:323-328.

Fisher, J. T., and A. Ladle. 2022. Syntopic species interact with large boreal mammals' response
to anthropogenic landscape change. Science of the Total Environment:153432.

Flagel, D. G., G. E. Belovsky, M. J. Cramer, D. E. Beyer Jr, and K. E. Robertson. 2017. Fear and
loathing in a Great Lakes forest: cascading effects of competition between wolves and
coyotes. Journal of Mammalogy 98:77-84.

Fox, J., S. Weisberg, B. Price, D. Adler, D. Bates, G. Baud-Bovy, B. Bolker, S. Ellison, D. Firth,
M. Friendly, G. Gorjanc, S. Graves, R. Heiberger, P. Krivitsky, R. Laboissiere, M.
Maechler, G. Monette, D. Murdoch, H. Nilsson, D. Ogle, B. Ripley, T. Short, W.
Venables, S. Walker, D. Winsemius, A. Zeileis, and R-Core. 2019. R package “car”.

Fryxell, J. M., A. Mosser, A. R. Sinclair, and C. Packer. 2007. Group formation stabilizes
predator—prey dynamics. Nature 449:1041-1043.

Gese, E. M., and S. Grothe. 1995. Analysis of coyote predation on deer and elk during winter in
Yellowstone National Park, Wyoming. American Midland Naturalist:36-43.

112



858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

Greenberg, S., and T. Godin. 2012. Timelapse image analysis manual. University of Calgary.

Grente, O., S. Bauduin, N. L. Santostasi, S. Chamaillé-Jammes, C. Duchamp, N. Drouet-Hoguet,
and O. Gimenez. 2024. Evaluating the effects of wolf culling on livestock predation when
considering wolf population dynamics in an individual-based model. Wildlife Biology
2024:¢01227.

Hansson, L. 1992. Landscape ecology of boreal forests. Trends in Ecology & Evolution 7:299-
302.

Hawkins, B. A., J. A. F. Diniz-Filho, L. Mauricio Bini, P. De Marco, and T. M. Blackburn. 2007.
Red herrings revisited: spatial autocorrelation and parameter estimation in geographical
ecology. Ecography 30:375-384.

Hayward, M. W, C. D. Mitchell, J. F. Kamler, P. Rippon, D. R. Heit, V. Nams, and R. A.
Montgomery. 2023. Diet selection in the Coyote Canis latrans. Journal of Mammalogy
104:1338-1352.

Heim, N., J. T. Fisher, A. Clevenger, J. Paczkowski, and J. Volpe. 2017. Cumulative effects of
climate and landscape change drive spatial distribution of Rocky Mountain wolverine
(Gulo gulo L.). Ecology and Evolution 7:8903-8914.

Hervieux, D., M. Hebblewhite, D. Stepnisky, M. Bacon, and S. Boutin. 2014. Managing wolves
(Canis lupus) to recover threatened woodland caribou (Rangifer tarandus caribou) in
Alberta. Canadian Journal of Zoology 92:1029-1037.

Hinton, J. W., A. K. Ashley, J. A. Dellinger, J. L. Gittleman, F. T. van Manen, and M. J.
Chamberlain. 2017. Using diets of Canis breeding pairs to assess resource partitioning
between sympatric red wolves and coyotes. Journal of Mammalogy 98:475-488.

Hody, J. W., and R. Kays. 2018. Mapping the expansion of coyotes (Canis latrans) across North
and Central America. ZooKeys:81.

Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments.
Ecological Monographs 54:187-211.

Ibisch, P. L., M. T. Hoffmann, S. Kreft, G. Pe’er, V. Kati, L. Biber-Freudenberger, D. A.
DellaSala, M. M. Vale, P. R. Hobson, and N. Selva. 2016. A global map of roadless areas
and their conservation status. Science 354:1423-1427.

Institute, A. B. M. 2021. The Human Footprint Inventory (HFI) for Alberta 2021 (version 1.0) :

Metadata Documentation.

113



889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

Institute, A. B. M. 2024. Enhanced Human Footprint Oil Sands Region 2021.

James, A. R., and A. K. Stuart-Smith. 2000. Distribution of caribou and wolves in relation to
linear corridors. The Journal of Wildlife Management:154-159.

Jensen, A. J., C. J. Marneweck, J. C. Kilgo, and D. S. Jachowski. 2022. Coyote diet in North
America: geographic and ecological patterns during range expansion. Mammal Review
Early view.

Jensen, R., J. Ruprecht, E. Orning, T. Levi, D. E. Clark, and T. D. Forrester. 2024. Large-scale
overlap and fine-scale avoidance: assessing interactions between coyotes, bobcats, and
cougars at multiple scales. Journal of Mammalogy:gyae045.

Jordaan, S. M. 2012. Land and water impacts of oil sands production in Alberta. Environmental
Science & Technology 46:3611-3617.

Kansas, J. L., M. L. Charlebois, and H. G. Skatter. 2015. Vegetation recovery on low impact
seismic lines in Alberta’s oil sands and visual obstruction of wolves (Canis lupus) and
woodland caribou (Rangifer tarandus caribou). Canadian Journal of Wildlife Biology and
Management 4:137-149.

Komers, P., and Z. Stanojevic. 2013. Rates of disturbance vary by data resolution: implications
for conservation schedules using the Alberta Boreal Forest as a case study. Global Change
Biology 19:2916-2928.

Krebs, C. J., R. Boonstra, V. Nams, M. O'Donoghue, K. E. Hodges, and S. Boutin. 2001a.
Estimating snowshoe hare population density from pellet plots: a further evaluation.
Canadian Journal of Zoology 79:1-4.

Krebs, C. J., S. Boutin, and R. Boonstra. 2001b. Ecosystem dynamics of the boreal forest. New
York7 The Kluane Project.

Lankau, H. E., E. M. Bayne, and C. S. Machtans. 2013. Ovenbird (Seiurus aurocapilla) territory
placement near seismic lines is influenced by forest regeneration and conspecific density.
Avian Conservation and Ecology 8.

Latham, A. D. M., M. C. Latham, M. S. Boyce, and S. Boutin. 2011a. Movement responses by
wolves to industrial linear features and their effect on woodland caribou in northeastern
Alberta. Ecological Applications 21:2854-2865.

Latham, A. D. M., M. C. Latham, M. S. Boyce, and S. Boutin. 2011b. The Role of Predation in
Woodland Caribou Population Declines in Northeastern Alberta — Coyotes.

114



920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

Latham, A. D. M., M. C. Latham, N. A. McCutchen, and S. Boutin. 201 1c. Invading white-tailed
deer change wolf—caribou dynamics in northeastern Alberta. The Journal of Wildlife
Management 75:204-212.

Lendrum, P. E., J. M. Northrup, C. R. Anderson, G. E. Liston, C. L. Aldridge, K. R. Crooks, and
G. Wittemyer. 2018. Predation risk across a dynamic landscape: effects of anthropogenic
land use, natural landscape features, and prey distribution. Landscape Ecology 33:157-170.

Lesmerises, R., J. P. Ouellet, C. Dussault, and M. H. St-Laurent. 2013. The influence of
landscape matrix on isolated patch use by wide-ranging animals: conservation lessons for
woodland caribou. Ecology and Evolution 3:2880-2891.

Levi, T., and C. C. Wilmers. 2012. Wolves—coyotes—foxes: a cascade among carnivores. Ecology
93:921-929.

Lukasik, V. M., and S. M. Alexander. 2012. Spatial and temporal variation of coyote (Canis
latrans) diet in Calgary, Alberta. Cities and the Environment (CATE) 4:8.

MacKenzie, D. L., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A.
Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less than
one. Ecology 83:2248-2255.

Mastro, L. L., D. J. Morin, and E. M. Gese. 2019. Home range and habitat use of West Virginia
Canis latrans (Coyote). Northeastern Naturalist 26:616-628.

McKenzie, H. W., E. H. Merrill, R. J. Spiteri, and M. A. Lewis. 2012. How linear features alter
predator movement and the functional response. Interface focus 2:205-216.

Mech, L. D., and L. Boitani. 2019. Wolves: behavior, ecology, and conservation. University of
Chicago Press.

Merkle, J. A., D. R. Stahler, and D. W. Smith. 2009. Interference competition between gray
wolves and coyotes in Yellowstone National Park. Canadian Journal of Zoology 87:56-63.

Messier, F., and M. Créte. 1985. Moose-wolf dynamics and the natural regulation of moose
populations. Oecologia 65:503-512.

Miller, B. J., H. J. Harlow, T. S. Harlow, D. Biggins, and W. J. Ripple. 2012. Trophic cascades
linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals. Canadian
Journal of Zoology 90:70-78.

Muhly, T. B., C. Semeniuk, A. Massolo, L. Hickman, and M. Musiani. 2011. Human activity
helps prey win the predator-prey space race. PloS One 6:e17050.

115



951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

Mumma, M. A., M. P. Gillingham, C. J. Johnson, and K. L. Parker. 2019. Functional responses
to anthropogenic linear features in a complex predator-multi-prey system. Landscape
Ecology 34:2575-2597.

Mumma, M. A., M. P. Gillingham, K. L. Parker, C. J. Johnson, and M. Watters. 2018. Predation
risk for boreal woodland caribou in human-modified landscapes: Evidence of wolf spatial
responses independent of apparent competition. Biological Conservation 228:215-223.

Murray, D. L., J. Gobin, A. Scully, and D. H. Thornton. 2023. Conventional niche overlap
measurements are not effective for assessing interspecific competition. Frontiers in
Ecology and Evolution 11:1281108.

Murray, M., A. Cembrowski, A. Latham, V. Lukasik, S. Pruss, and C. St Clair. 2015. Greater
consumption of protein-poor anthropogenic food by urban relative to rural coyotes
increases diet breadth and potential for human—wildlife conflict. Ecography 38:1235-1242.

Nellemann, C., I. Vistnes, P. Jordhey, and O. Strand. 2001. Winter distribution of wild reindeer
in relation to power lines, roads and resorts. Biological Conservation 101:351-360.

Newsome, T. M., L. Boitani, G. Chapron, P. Ciucci, C. R. Dickman, J. A. Dellinger, J. V. Lépez-
Bao, R. O. Peterson, C. R. Shores, and A. J. Wirsing. 2016. Food habits of the world's grey
wolves. Mammal Review 46:255-269.

Newton, E. J., B. R. Patterson, M. L. Anderson, A. R. Rodgers, L. M. Vander Vennen, and J. M.
Fryxell. 2017. Compensatory selection for roads over natural linear features by wolves in
northern Ontario: implications for caribou conservation. PloS One 12:e0186525.

O'Connell, A. F., J. D. Nichols, and K. U. Karanth. 2011. Camera traps in animal ecology:
methods and analyses. Springer.

O’Donoghue, M., S. Boutin, C. J. Krebs, G. Zuleta, D. L. Murray, and E. J. Hofer. 1998.
Functional responses of coyotes and lynx to the snowshoe hare cycle. Ecology 79:1193-
1208.

Paquet, P. C. 1992. Prey use strategies of sympatric wolves and coyotes in Riding Mountain
National Park, Manitoba. Journal of Mammalogy 73:337-343.

Pattison, C. A., M. S. Quinn, P. Dale, and C. P. Catterall. 2016. The landscape impact of linear
seismic clearings for oil and gas development in boreal forest. Northwest Science 90:340-

354.

116



981  Petroelje, T. R., T. M. Kautz, D. E. Beyer Jr, and J. L. Belant. 2021. Interference competition
982 between wolves and coyotes during variable prey abundance. Ecology and Evolution
983 11:1413-1431.

984  Pickell, P. D., D. W. Andison, N. C. Coops, S. E. Gergel, and P. L. Marshall. 2015. The spatial

985 patterns of anthropogenic disturbance in the western Canadian boreal forest following oil
986 and gas development. Canadian Journal of Forest Research 45:732-743.

987  Porter, J., R. Price, and R. McCrossan. 1982. The western Canada sedimentary basin.

988 Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
989 Physical Sciences 305:169-192.

990  Prugh, L. R. 2005. Coyote prey selection and community stability during a decline in food
991 supply. Oikos 110:253-264.
992  Roberts, D. R, E. M. Bayne, D. Beausoleil, J. Dennett, J. T. Fisher, R. O. Hazewinkel, D.

993 Sayanda, F. Wyatt, and M. G. Dubé. 2022. A synthetic review of terrestrial biological

994 research from the Alberta oil sands region: 10 years of published literature. Integrated

995 Environmental Assessment and Management 18:388-406.

996 Rosa, L., K. F. Davis, M. C. Rulli, and P. D'Odorico. 2017. Environmental consequences of oil

997 production from oil sands. Earth's Future 5:158-170.

998 Ruggiero, L. F. 1994. The scientific basis for conserving forest carnivores: American marten,

999 fisher, lynx, and wolverine in the western United States. US Department of Agriculture,
1000 Forest Service, Rocky Mountain Forest and ....

1001  Sage, R. F. 2020. Global change biology: a primer. Global Change Biology 26:3-30.
1002  Sawyer, S. C., C. W. Epps, and J. S. Brashares. 2011. Placing linkages among fragmented

1003 habitats: do least-cost models reflect how animals use landscapes? Journal of Applied
1004 Ecology 48:668-678.

1005  Schieck, J., P. S6lymos, and D. Huggard. 2014. ABMI science letters: human footprint in

1006 Alberta. AMBI, University of Alberta, Edmonton, Alberta, Canada.[online] URL: http ....
1007  Schoener, T. W. 1974. Resource Partitioning in Ecological Communities: Research on how
1008 similar species divide resources helps reveal the natural regulation of species diversity.
1009 Science 185:27-39.

117



1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

Shi, Y., Y. Hoareau, E. M. Reese, and S. K. Wasser. 2021. Prey partitioning between sympatric
wild carnivores revealed by DNA metabarcoding: a case study on wolf (Canis lupus) and
coyote (Canis latrans) in northeastern Washington. Conservation Genetics 22:293-305.

Skatter, H. G., J. L. Kansas, M. L. Charlebois, and S. Skatter. 2020. Long-term snow track
monitoring to understand factors affecting boreal forest mammal density in an expanding
in situ oil sands area. Canadian Wildlife Biology and Management 2:107-131.

Slough, B. G., and G. Mowat. 1996. Lynx population dynamics in an untrapped refugium. The
Journal of Wildlife Management:946-961.

Steffen, W., R. A. Sanderson, P. D. Tyson, J. Jager, P. A. Matson, B. Moore III, F. Oldfield, K.
Richardson, H.-J. Schellnhuber, and B. L. Turner. 2005. Global Change and the Earth
System: a Planet Under Pressure. Springer Science & Business Media.

Stern, E. R., F. Riva, and S. E. Nielsen. 2018. Effects of narrow linear disturbances on light and
wind patterns in fragmented boreal forests in northeastern Alberta. Forests 9:486.

Switalski, T. A. 2003. Coyote foraging ecology and vigilance in response to gray wolf
reintroduction in Yellowstone National Park. Canadian Journal of Zoology 81:985-993.

Tattersall, E., K. Pigeon, D. MacNearney, and L. Finnegan. 2023. Walking the line: Investigating
biophysical characteristics related to wildlife use of linear features. Ecological Solutions
and Evidence 4:¢12219.

Tattersall, E. R., J. M. Burgar, J. T. Fisher, and A. C. Burton. 2020. Boreal predator co-
occurrences reveal shared use of seismic lines in a working landscape. Ecology and
Evolution 10:1678-1691.

Territories, G. 0. N. Lynx-Snowshoe Hare Cycle.

Timoney, K., and P. Lee. 2001. Environmental management in resource-rich Alberta, Canada:
first world jurisdiction, third world analogue? Journal of Environmental Management
63:387-405.

Todd, A. W., and L. B. Keith. 1983. Coyote demography during a snowshoe hare decline in
Alberta. The Journal of Wildlife Management:394-404.

Todd, A. W., L. B. Keith, and C. A. Fischer. 1981. Population ecology of coyotes during a
fluctuation of snowshoe hares. The Journal of Wildlife Management:629-640.

Toews, M., F. Juanes, and A. C. Burton. 2018. Mammal responses to the human footprint vary

across species and stressors. Journal of Environmental Management 217:690-699.

118



1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

Trombulak, S. C., and C. A. Frissell. 2000. Review of ecological effects of roads on terrestrial
and aquatic communities. Conservation Biology 14:18-30.

van Rensen, C. K., S. E. Nielsen, B. White, T. Vinge, and V. J. Lieffers. 2015. Natural
regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta’s oil
sands region. Biological Conservation 184:127-135.

Van Scoyoc, A., K. L. Calhoun, and J. S. Brashares. 2024. Using multiple scales of movement to
highlight risk—reward strategies of coyotes (Canis latrans) in mixed-use landscapes.
Ecosphere 15:¢4977.

Walker, M. A., M. Uribasterra, V. Asher, W. M. Getz, S. J. Ryan, J. M. Ponciano, and J. K.
Blackburn. 2021. Factors influencing scavenger guilds and scavenging efficiency in
Southwestern Montana. Scientific Reports 11:4254.

Ward, J. N., J. W. Hinton, K. L. Johannsen, M. L. Karlin, K. V. Miller, and M. J. Chamberlain.
2018. Home range size, vegetation density, and season influences prey use by coyotes
(Canis latrans). PloS One 13:¢0203703.

Ward, R. M., and C. J. Krebs. 1985. Behavioural responses of lynx to declining snowshoe hare
abundance. Canadian Journal of Zoology 63:2817-2824.

Weir, R. D., A. S. Harestad, and R. C. Wright. 2005. Winter diet of fishers in British Columbia.
Northwestern Naturalist 86:12-19.

Whitlock, M., and D. Schluter. 2015. The analysis of biological data. Roberts Publishers
Greenwood Village, Colorado.

Whittington, J., M. Hebblewhite, N. J. DeCesare, L. Neufeld, M. Bradley, J. Wilmshurst, and M.
Musiani. 2011. Caribou encounters with wolves increase near roads and trails: a time-to-
event approach. Journal of Applied Ecology 48:1535-1542.

Whittington, J., C. C. St. Clair, and G. Mercer. 2005. Spatial responses of wolves to roads and
trails in mountain valleys. Ecological Applications 15:543-553.

Wilmers, C. C., D. R. Stahler, R. L. Crabtree, D. W. Smith, and W. M. Getz. 2003. Resource
dispersion and consumer dominance: scavenging at wolf-and hunter-killed carcasses in
Greater Yellowstone, USA. Ecology Letters 6:996-1003.

Wittische, J., S. Heckbert, P. M. A. James, A. C. Burton, and J. T. Fisher. 2021. Community-
level modelling of boreal forest mammal distribution in an oil sands landscape. Science of

the Total Environment 755:142500.

119



1072
1073
1074
1075
1076
1077

Zuckerberg, B., J. M. Cohen, L. A. Nunes, J. Bernath-Plaisted, J. D. Clare, N. A. Gilbert, S. S.

Kozidis, S. B. Maresh Nelson, A. A. Shipley, and K. L. Thompson. 2020. A review of

overlapping landscapes: pseudoreplication or a red herring in landscape ecology? Current

Landscape Ecology Reports 5:140-148.

120



1078
1079
1080

1081
1082

1083
1084
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

7. WHITE-TAILED DEER ON THE MOVE: A PROPOSED APPROACH TO
INVESTIGATE DRIVERS AND IMPACTS OF BOREAL EXPANSION USING
STRUCTURAL EQUATION MODELING

Marissa A. Dyck, Andrew F. Barnas, Megan Braun, Jason T. Fisher

OSM Summary

“Whose problem is it anyway?” is a question often heard from industry caucus of OSM.
One of the principal goals of OSM is to identify which OS features (or other anthropogenic
features) are causing negative responses for mammal species, so that restoration or other
mitigation actions can be identified. In past works we have shown that multiple features
generally contribute to mammals’ responses to development (Dickie et al. 2020a, Serrouya et al.
2020, Laurent et al. 2021, Wittische et al. 2021b, Dickie et al. 2022, Fisher and Ladle 2022b,
Roberts et al. 2022, Fuller et al. 2023, Barnas et al. 2024c, Carroll et al. 2024). These highlight
the complexity of mammal-stressor relationships but cannot fully parse apart relative
contributions of different features. Were we proposed an analytical approach — structural
equation modelling — to attempt this task. This approach has been used previously in
examination of seismic lines (Curveira-Santos et al. 2024) and we show how it can be applied for
OSM analysis in a proof-of-concept focussing on a primary indicator of large-scale boreal

change: white-tailed deer.

Introduction

Species range dynamics are a fundamental focus of ecology; understanding fluctuations
in distribution and abundance of species and the consequences of these changes is also critical
for proper management and conservation. Anthropogenic landscape change and climate change
are two major drivers of species range dynamics. (Hughes 2000, McCarty 2001, Walther et al.
2002, Thuiller et al. 2008, Dawe and Boutin 2016, Lyn Morelli et al. 2025). More than 75% of
ice-free land has undergone human-induced modification, meanwhile, the Earth’s climate has
warmed 0.38 to 0.68 °C over the last 100 years (Change 1995, Ellis and Ramankutty 2008). Such
drastic change has resulted in the range contraction and expansion of many species. Resulting

changes to species dynamics are not always easily predicted as effects from climate change and
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landscape alteration may be conflicting and context dependent. For example, Morelli et al.
(2025) found that American red squirrels did not shift their range upslope as would be predicted
by climate warming but rather shifted downslope in response to timber harvest-recovered red-
spruce forests. The expansion and establishment of species outside their native range (i.e.,
neonates) can have widespread consequences for native flora and fauna. Prey species in
particular, can alter predator-prey dynamics leading to declines in native prey via direct and
apparent competition (Serrouya et al. 2015).

In the last century, white-tailed deer (Odocoileus virginianus) populations have
increased, and they have expanded their range (Veitch 2001, VerCauteren 2003, Dawe and
Boutin 2016). White-tailed deer have expanded as far north as Canada’s boreal forest where they
are indirectly attributed to the decline of Caribou (Rangifer tarandus) (Latham et al. 2011d,
Hervieux et al. 2013, Latham et al. 2013). Previous research has shown that white-tailed deer
expansion and establishment in Canada is largely attributed to climate and landscape change
(Dawe 2011, Munro et al. 2012, Dawe and Boutin 2016, Laurent et al. 2021, Dickie et al. 2024a,
Felton et al. 2024). However, few studies have investigated the relative importance of individual
landscape features (e.g., seismic lines, roads, cutblocks) on white-tailed deer distribution.
Management decisions to address and mitigate the effects of neonative white-tailed deer on
caribou and other species of concern requires a robust understanding of the direct and indirect
impacts that individual disturbance features have on white-tailed deer. We aimed to disentangle
the effects of landscape change on white-tailed deer abundance and distribution in part of
Canada’s western boreal forest, the Athabasca oil sands, using multiple years of camera data and
Structural Equation Modeling (SEM).

The Athabasca oil sands is an area where Canada’s boreal forest is changing rapidly due
to extensive resource extraction. Energy development and exploration in the oil sands has created
landscapes without global or historical analogs (Pickell et al. 2015), to the detriment of some
species while benefitting others (Fisher and Burton 2018). Previous research shows coyotes
(Canis latrans) and grey wolves (Canis lupus) benefit from linear features which they can use as
movement corridors to increase predation opportunities (James and Stuart-Smith 2000b, Latham
et al. 2011b, Fisher and Burton 2018, Dickie et al. 2020a). These features simultaneously
disadvantage prey species like moose (4lces alces) and caribou (James and Stuart-Smith 2000b,

Fisher and Burton 2018). Thus, the oil sands represent an ideal system to investigate specific
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drivers of neonative white-tailed deer distribution and the potential consequences of their
expansion into boreal Canada.

Structural equation models (SEMs) are used to test hypothesized causal relations between
multiple predictor and response variables by evaluating multiple structured equations in a single
causal network (Pearl 2000, Karimi and Meyer 2014), and are particularly useful for quantifying
indirect effects as variables can serve as both predictors and responses in the model framework
(Lefcheck 2016). SEMs also provide information on the relative importance of variables with
standardized coefficient estimates and the total (direct and indirect) effect of individual variables.
Current approaches for conducting SEMs, such as piecewise SEM, are highly adaptable and
allow for simultaneous implementation of non-normal distributions, random effects, and
different correlation structures (Lefcheck 2016). Thus, SEMs work well to address complex
ecological questions where underlying causation is of interest and informed by pre-existing

knowledge of the system.

Methods
Camera sampling design

This study was part of the joint Canada-Alberta Oil Sands Monitoring program (Roberts
et al. 2022) and the design follows the terrestrial Biological Monitoring Program’s before-after-
dose-response (BADR) design (Bayne et al. 2021a). We employed a constrained stratified
sampling design whereby the area was divided into six 1000-2000 km? landscape units (LUs)
according to degree of development and each LU was further classified as either upland (>50%
upland deciduous forest) or lowland (>50% wet coniferous forest) based on the dominant forest
type. Within each LU, we divided the area into 2 km? hexagonal grid cells using ArcGIS
(Version 10.3; ESRI 2014), ensuring that the cells were located within 100 m of accessible roads
or trails. We then randomly selected 40-50 cells from within each LU. One remote infrared
wildlife camera (Reconyx PC900 Hyperfire™, Holmen, WI, USA) was deployed within each
selected cell. To maximize detections. And reduce false absences, cameras were placed along
wildlife trails (MacKenzie and Royle 2005)and positioned towards a bait tree which we applied a
scent lure to (O’Gorman’s™ Long Distance Call, O’Gorman’s MT) (Stewart et al. 2019b).
Camera deployment locations were at least 100 m from active human-use roads and trails and at

least 1 km from other camera locations in adjacent cells. Cameras were deployed from 2021 to
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2023 in each of the six LUs and were monitored for approximately 12 months (two LUs from
2021-2022 and four LUs from 2022-2023), however, some monitoring periods were limited due
to logistical constraints. Images were identified to the lowest taxonomical classification by
trained reviewers using Timelapse Image Analyzer 2.0 (Greenberg et al. 2019a).

From the camera images we calculated the proportion of months white-tailed deer were
detected at each camera, controlling for camera failures by omitting months with fewer than 15
operational camera days. Monthly white-tailed deer occurrence was assumed to follow a
Bernoulli distribution, whereby each month was considered an independent trial where a species
was detected (1) or not detected (0) within a calendar month. We treated 0’s as true-absences and
not potential false-absences; a non-detection of a white-tailed deer on a wildlife trail, with lure,
in an entire month, can confidently be treated as a true absence. We also calculated the total
number of independent detections — defined as images of a species taken at least 30 min apart —
for six species expected to directly or indirectly influence white-tailed deer relative abundance

(moose, grey wolf, coyote, snowshoe hare, black bear, and lynx).

Quantifying natural and anthropogenic landscape features around cameras

We calculated the proportion of anthropogenic and natural landscape features within a
1500-meter buffer around each camera location as this radius was identified as the most
informative scale for white-tailed deer in our study are from previous research (Dyck et al., in
prep). Anthropogenic disturbance features were derived from the Alberta Biodiversity
Monitoring Institute’s (ABMI) Wall-to-Wall Human Footprint Inventory, Enhanced for Oil
Sands Monitoring Region (Alberta Biodiversity Monitoring 2021) and ecologically similar
variables were grouped together (Table S1). Natural landscape features from the ABMI Wall-to-
wall Land Cover Map 2010 Version 1.0 (Alberta Biodiversity Monitoring 2010). We assessed
multicollinearity among our variables with Pearson’s correlation tests and variables with a
correlation coefficient (r) greater than 0.6 were not included in the same structured equation
(Zuur et al. 2010b).
Model development

To evaluate the relative contributions of different landscape features on the spatial
distribution and abundance of white-tailed deer in the oil sands, we used piecewise SEMs.

Analysis was conducted in program R version 4.2.1 (R Core Team 2022) using the ‘piecewise’
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package (Lefcheck 2016). Each individual structured equation within our analysis was fit as a
generalize linear mixed model (GLMM), with LU as a random effect, using package Ime4 (Bates
et al. 2015). We modeled white-tailed deer monthly occurrence as an endogenous variable
(response variable influenced by other covariates in the model) and landscape covariates as
exogenous variables (independent variables not influenced by other covariates in the model)
following the formula outlined in equation 1.
Equation 1:
Nij = Bo + B1X1ij + B2 Xzij + ... B3Xnij + LU;
log(4i;) = 1
Mammal detections;j~ Poisson(4;;)
LU;~ Gaussian(0, %)
Where 1 is the linear predictor, [ is the intercept, fn*Xn is a covariate of interest. White-tailed
deer occurrence is represented the i™ observation at LUj, where LU is a random intercept with j®

level j= individual landscape unit.

Detections of other mammal species were modeled as both endogenous and exogenous
variables (Figure 2) whereby they could represent a covariate X, of interest as in equation 1 or as
a response variable following a Poisson distribution as in equation 2.

Equation 2:

Nij = Bo + B1X1ij + B2Xaij + . B3Xpij + LU;
logit(Bl-j) = Nyj
Mammal detections~ Poisson(6;;)
LU;~ Gaussian(0,0?%)
Using this framework, we developed an SEM that represented a priori hypothesized causal
pathways among species and between species and landscape variables, based on previous
research (Figure 2). We evaluated our hypothesized models’ fit using Fisher’s C statistic. The
Fisher’s C statistic tests the fit of the given model to the data and is compared to a chi-square
distribution whereby a non-significant chi-square (p > 0.05) means that there is weak support for
the sum of the conditional independence claims, and thus indicates the hypothesized

relationships are consistent with the data (Lefcheck 2016).
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Results and Future Directions

Our initial hypothesized model was a poor fit (C = 508.42, p = 0.00, df = 42), indicting
we need to reevaluate the causal paths in our path diagram. We can conduct tests of directed
separation, a function built into the ‘piecewiseSEM’ package to assess independence claims or
missing pathways among variables, to look for significant (p<0.05) independence claims to
optimize our model to the data (Lefcheck 2016, Stenegren et al. 2017). If an independence claim
is deemed biologically relevant and improves the model fit (i.e., lowers the Fisher’s C statistic),
we can include it in further iterations of our model and re-evaluate its fit. Once we have fit a
model with better explanatory power (non-significant Fisher’s C p-value) we can evaluate the
relative importance of individual variables on white-tailed deer by comparing the standardized

coefficient estimates.
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Figure 1: Hypothesized path diagram for landscape and interspecific interactions influencing
white-tailed deer distribution and abundance in the oil sands, Alberta, Canada. Boxes represent

various covariates and response variables and arrows represent hypothesized causal pathways.

References

Alberta Biodiversity Monitoring, I. 2010. Wall-to-wall Land Cover Inventory.

Alberta Biodiversity Monitoring, 1. 2021. Wall-to-Wall Human Footprint Inventory, Enhanced
for Oil Sands Monitoring Region.

Bates, D., M. Michler, B. Bolker, and S. Walker. 2015. Fitting Linear Mixed-Effects Models
Using Ime4. Journal of Statistical Software 67:1-48.

Bayne, E., J. Dennett, J. Dooley, M. Kohler, J. Ball, M. Bidwell, A. Braid, J. Chetelat, E.
Dillegeard, D. Farr, J. Fisher, M. Freemark, K. Foster, C. Godwin, C. Herbert, D.
Huggard, D. Mclssac, T. Narwani, S. Nielsen, B. Pauli, S. Prasad, D. Roberts, S. Slater,
S. Song, S. Swanson, P. Thomas, J. Toms, C. Twitchell, S. White, F. Wyatt, and L.
Mundy. 2021. A Before-After Dose-Response (BADR) Terrestrial Biological Monitoring
Framework for the Oil Sands. OSM Technical Report Series 7.

Change, C. 1995. Intergovernmental panel on climate change (IPCC). CC BY 4:1.

Dawe, K. L. 2011. Factors driving range expansion of white-tailed deer, Odocoileus virginianus,
in the boreal forest of northern Alberta, Canada.

Dawe, K. L., and S. Boutin. 2016. Climate change is the primary driver of white-tailed deer
(Odocoileus virginianus) range expansion at the northern extent of its range; land use is
secondary. Ecology and Evolution 6:6435-6451.

Dickie, M., S. R. McNay, G. D. Sutherland, M. Cody, and T. Avgar. 2020. Corridors or risk?
Movement along, and use of, linear features varies predictably among large mammal
predator and prey species. Journal of Animal Ecology 89:623-634.

Dickie, M., R. Serrouya, M. Becker, C. DeMars, M. J. Noonan, R. Steenweg, S. Boutin, and A.
T. Ford. 2024. Habitat alteration or climate: What drives the densities of an invading
ungulate? Global Change Biology 30:e17286.

Ellis, E. C., and N. Ramankutty. 2008. Putting people in the map: anthropogenic biomes of the
world. Frontiers in Ecology and the Environment 6:439-447.

127



1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

Felton, A. M., H. K. Wam, Z. Borowski, A. Granhus, L. Juvany, J. Matala, M. Melin, M.
Wallgren, and A. Mérell. 2024. Climate change and deer in boreal and temperate regions:
From physiology to population dynamics and species distributions. Global Change
Biology 30:e17505.

Fisher, J. T., and A. C. Burton. 2018. Wildlife winners and losers in an oil sands landscape.
Frontiers in Ecology and the Environment 16:323-328.

Greenberg, S., T. Godin, and J. Whittington. 2019. Design patterns for wildlife-related camera
trap image analysis. Ecology and Evolution 9:13706-13730.

Hervieux, D., M. Hebblewhite, N. J. DeCesare, M. Russell, K. Smith, S. Robertson, and S.
Boutin. 2013. Widespread declines in woodland caribou (Rangifer tarandus caribou)
continue in Alberta. Canadian Journal of Zoology 91:872-882.

Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent?
Trends in Ecology & Evolution 15:56-61.

James, A. R. C., and A. K. Stuart-Smith. 2000. Distribution of Caribou and Wolves in Relation
to Linear Corridors. The Journal of Wildlife Management 64:154-159.

Karimi, L., and D. Meyer. 2014. Structural Equation Modeling in Psychology: The History,
Development and Current Challenges. International Journal of Psychological Studies
6:p123.

Latham, A. D. M., M. C. Latham, M. S. Boyce, and S. Boutin. 2011a. Movement responses by
wolves to industrial linear features and their effect on woodland caribou in northeastern
Alberta. Ecological Applications 21:2854-2865.

Latham, A. D. M., M. C. Latham, K. H. Knopff, M. Hebblewhite, and S. Boutin. 2013. Wolves,
white-tailed deer, and beaver: implications of seasonal prey switching for woodland
caribou declines. Ecography 36:1276-1290.

Latham, A. D. M., M. C. Latham, N. A. McCutchen, and S. Boutin. 2011b. Invading white-tailed
deer change wolf—caribou dynamics in northeastern Alberta. The Journal of Wildlife
Management 75:204-212.

Laurent, M., M. Dickie, M. Becker, R. Serrouya, and S. Boutin. 2021. Evaluating the
Mechanisms of Landscape Change on White-Tailed Deer Populations. The Journal of
Wildlife Management 85:340-353.

128



1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

Lefcheck, J. S. 2016. piecewiseSEM : Piecewise structural equation modelling in r for ecology,
evolution, and systematics. Methods in Ecology and Evolution 7:573-579.

Lyn Morelli, T., M. T. Hallworth, T. Duclos, A. Ells, S. D. Faccio, J. R. Foster, K. P. McFarland,
K. Nislow, J. Ralston, M. Ratnaswamy, W. V. Deluca, and A. P. K. Siren. 2025. Does
habitat or climate change drive species range shifts? Ecography n/a:e07560.

Mackenzie, D. L., and J. A. Royle. 2005. Designing occupancy studies: general advice and
allocating survey effort. Journal of Applied Ecology 42:1105-1114.

McCarty, J. P. 2001. Ecological Consequences of Recent Climate Change. Conservation Biology
15:320-331.

Munro, K. G., J. Bowman, and L. Fahrig. 2012. Effect of paved road density on abundance of
white-tailed deer. Wildlife Research 39:478.

Pearl, J. 2000. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress 19.

Pickell, P. D., D. W. Andison, N. C. Coops, S. E. Gergel, and P. L. Marshall. 2015. The spatial
patterns of anthropogenic disturbance in the western Canadian boreal forest following oil
and gas development. Canadian Journal of Forest Research 45:732-743.

Roberts, D. R., E. M. Bayne, D. Beausoleil, J. Dennett, J. T. Fisher, R. O. Hazewinkel, D.
Sayanda, F. Wyatt, and M. G. Dubé. 2022. A synthetic review of terrestrial biological
research from the Alberta oil sands region: 10 years of published literature. Integrated
Environmental Assessment and Management 18:388-406.

Serrouya, R., M. J. Wittmann, B. N. McLellan, H. U. Wittmer, and S. Boutin. 2015. Using
Predator-Prey Theory to Predict Outcomes of Broadscale Experiments to Reduce
Apparent Competition. The American Naturalist 185:665-679.

Stenegren, M., C. Berg, C. C. Padilla, S.-S. David, J. P. Montoya, P. L. Yager, and R. A. Foster.
2017. Piecewise Structural Equation Model (SEM) Disentangles the Environmental
Conditions Favoring Diatom Diazotroph Associations (DDAs) in the Western Tropical
North Atlantic (WTNA). Frontiers in Microbiology 8.

Stewart, F. E. C., J. P. Volpe, and J. T. Fisher. 2019. The Debate About Bait: A Red Herring in
Wildlife Research. The Journal of Wildlife Management 83:985-992.

Thuiller, W., C. Albert, M. B. Aratijo, P. M. Berry, M. Cabeza, A. Guisan, T. Hickler, G. F.
Midgley, J. Paterson, F. M. Schurr, M. T. Sykes, and N. E. Zimmermann. 2008.

129



1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

Predicting global change impacts on plant species’ distributions: Future challenges.
Perspectives in Plant Ecology, Evolution and Systematics 9:137-152.

Veitch, A. M. 2001. An unusual record of a white-tailed deer, Odocoileus virginianus, in the
Northwest Territories. Canadian Field Naturalist 115:172-175.

VerCauteren, K. C. 2003. The deer boom: discussins on population growth and range expansion
of the white-tailed deer.

Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin,
O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate
change. Nature 416:389-395.

Zuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid
common statistical problems: Data exploration. . Methods in Ecology and Evolution 1:3-

14.

130



1352
1353

1354
1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

8. EVALUATING MODEL SELECTION UNCERTAINTY IN THE CONTEXT OF THE
BEFORE-AFTER DOSE-RESPONSE DESIGN USING SIMULATION

Andrew F. Barnas, Marissa Dyck, Jason Fisher
OSM SUMMARY

The OSM TAC, SIKIC, and Oversight Committees are naturally always looking for efficiencies
to monitoring. One of the questions that has arisen around the TBM’s BADR design (Bayne et al. 2021b)
is, “Do we need to do all of this sampling?”. This question has in part driven the work being done on
baselines and triggers, and sensitivity and power analysis. Classic power analysis (Krebs 1989) is
designed for parametric statistics and is inappropriate for the information-theoretic approach (Burnham
and Anderson 2002a) that underpins all of our analyses. Nonetheless sampling size and extent certainly
are expected to influence the accuracy and precision of our model outcomes, and hence our conclusions.
Here we use a novel approach based on empirical models and simulations to demonstrate what is gained
through the multi-landscape BADR design and how reduced sampling markedly decreases confidence in
the model estimates and the subsequent conclusions.
Introduction
Anthropogenic landscape change is a leading cause of biodiversity loss (Butchart et al. 2010), and large
mammals are especially at risk (Johnson et al. 2017). Research has shown human disturbance can result in
behavioural shifts and altered species interactions (Gaynor et al. 2018, Frey et al. 2020, Boucher et al.
2022), which produce effects that can cascade throughout ecosystems. While much work is being done to
mitigate and restore effects of landscape change (Dickie et al. 2023), these problems are inherently
complicated due to the complexity of identifying specific drivers of mammalian responses (Barnas et al.
2024a, Dickie et al. 2024a, Dickie et al. 2024b). This complexity necessitates that conservation
practitioners rely on robust data collection and subsequent analyses on which to base intervention

decisions.
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Unfortunately, understanding mammal responses to these disturbances is difficult as ecological
processes can change across time and space (Levin 1992). Local environmental conditions, wildlife
community structures, and anthropogenic stressors drive changes in these ecological processes (Barnas et
al. 2024c¢), which causes difficulty in generalizing results and recommendations from one study location
to another. In some cases mammal populations can even respond to the same stressor in different ways in
different sampling regions (Fidino et al. 2021a), which further complicates this problem. Therefore,
providing generalizable conservation recommendations for specific species may be limited by constraints
on sampling abilities.

To address this problem, there are increasing calls for large-scale synthetic approaches to data
collection and analyses, especially with the use of remote camera traps for wildlife surveys (Steenweg et
al. 2017a, Kays et al. 2022). These tools are beneficial in that surveys are readily standardized, can easily
provide spatial and temporal replication (Burton et al. 2015b), and provide insights on many aspects of
wildlife biology including behaviour (Barnas et al. 2022a), population trends (Twining et al. 2024), and
demographic information (Goward 2024). Further, by aggregating data across study locations, camera
trap surveys should provide an avenue to identify generalizable patterns to better inform conservation
practices across broad regions or provide location-specific intervention requirements (Barnas et al.
2024c).

While these collaborative efforts are increasing in popularity, attention needs to be paid to the
analytical approaches that are used with these data. A common modeling approach with camera trap data
is to use model selection (Tredennick et al. 2021), where the goal is to identify the best predictive model
out of a set of proposed candidate models (Bayne et al. 2016, Gaston et al. 2024). However, uncertainty in
identifying the “best” model through different analytical choices can mislead researchers directing
conservation actions and contribute to the replicability crisis in the sciences (Gould et al. 2023, Yates et
al. 2023). Overfitting and sampling variance have been shown to induce uncertainty in model selection
results (Arnold 2010, Preacher and Merkle 2012, Yates et al. 2023), and this is potentially problematic for

the integration of datasets across multiple landscapes in assessing generalized mammal responses across
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broad regions. Therefore, assessing the performance of model selection results should be emphasized in
synthetic approaches, as this provides insight into the relative confidence of conclusions from a given
study design and subsequent inferences.

The goals of this manuscript are to evaluate the effects of sampling variance on model uncertainty
and resulting inferences for large mammal responses to anthropogenic oil sands features. To do this we
use empirical data from the ongoing Oil Sands Monitoring program to construct models of wildlife
occurrence in relation to anthropogenic stressors across multiple landscapes. We then simulate data from
these models to evaluate the impact of sampling variance (i.e. effort) across landscapes and evaluate the
effect of reducing or increasing sampling effort across landscapes on biological inferences.

Methods

Empirical Data Collection and Study Areas

The ongoing Oil Sands Monitoring program (Roberts et al. 2022) takes place in north-eastern Alberta,
Canada and is centered on a Before-After-Dose-Response design (Bayne et al. 2021b). The program is
designed to evaluate impacts of oil sands development on the western boreal ecosystem, and the terrestrial
mammal monitoring component of this program relies on camera trap surveys of large mammal
occurrence. Briefly, 429 cameras across 10 distinct landscapes were selected throughout the region,
providing a gradient of landscape disturbance and habitat types. Each landscape was partitioned into grid
cells and cells were selected for placement of a single remote camera trap (Reconyx Hyperfire 2, Holmen,
Wisconsin, USA). Cameras were programmed to collect images when movement was detected, as well as
a single timelapse photo each day to verify that cameras remained operational throughout the year.
Empirical Model Construction

We chose to construct models using two species as case studies, coyote (Canis latrans) and moose (4lces
alces). We chose these species due to their differing life history characteristics and hypothesized
contrasting responses, whereby coyotes are small-bodied and known to be anthrophilic towards linear
features such as roads, while moose are large-bodied and known to prioritize early seral forage polygonal

features and avoid active anthropogenic disturbance such as roads (Ethier et al. 2024b) .
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For each camera site, we calculated a proportional binomial response variable of monthly
occurrence (1/0 for presence or absence) examining whether each species was detected within a calendar
month (Figure 1). To minimize false negatives, we only considered cameras which contained >15 days of
camera operability within the month. For explanatory variables, we delineated a 1000m radius buffer
around each camera site location and used the Alberta Biodiversity Monitoring Institute’s Human Feature
Index and the Wall-to-Wall Land Cover Map (ABMI 2018) to extract the proportion landscape composed
of broadleaf forest, mixed forest, shrubs, roads, and industrial features (Figure 2). We chose these features
due to their differential hypothesized effects on each case study species (i.e. hypothesized negative effect
of roads on moose but positive effect on coyotes). However, we remind the reader we are predominately
interested in the change in estimated effect for each feature during simulation exercises, rather than
constructing a complete causal model of occurrence for each species. We tested for and found no

statistically significant Pearson’s correlation coefficients between any explanatory variables.
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Figure 1. Naive monthly occurrence of A) coyote and B) moose, calculated as the number of

calendar months present divided by the number of months absent on camera traps (neotat = 429)
within each camera landscape unit (n = 10). Note the number of camera traps varied within each

landscape unit.
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For each species, we constructed a candidate set of generalized linear mixed models based on the fully
saturated model provided in Equation 1. We assumed a Bernoulli distribution for each respective response
variable represented as the i observation at LU j, where LU is a random intercept for Landscape Unit
with the j level representing an individual landscape unit. We created a candidate set of models using the
MuMin package’s “dredge” function, to construct a model for every additive combination of fixed effects,
keeping the random effect constant in all models. We also included a null model which only included the
intercept and random effect. All proportional landscape variables were scaled prior to model fitting to
facilitate comparisons between effects sizes. All models were fit with maximum likelihood and ranked
based on AICc.
Equation 1:
nij = Po + ByBroadleaf;; + p,Mixed;j + B3Shrubs;;j + ,Roads;; + BsIndustrial;; + LU;
logit(@ij) = Nij
Monthly species occurrence;j~ Bernoulli(6;;)
LU;~ Gaussian(0, g?)
Model Simulations
Following model selection from the candidate set of empirical models for each species, we identified the
best supported model and simulated new datasets based on parameter estimates from the top model. For
simplicity we only considered the single top supported model, recognizing that other models may be
competitive (i.e. within A2 AICc). However, we are primarily interested in whether simulated datasets
from these top models will recover the main top model during repeat model selection, regardless of the
empirical uncertainty in the top model. For each species, we simulated the predicted Bernoulli response
for number of months present and absent for a total of 12 months based on a Monte Carlo Simulation
using the top model’s estimated parameters. For each observation, we drew a simulated coefficient
estimate based on a random normal draw parameterized by the estimated coefficient mean and standard

deviation. We drew a single random effect value for each landscape unit based on the empirical random

137



1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

effect estimate. For each observation we also included a small random observer error effect drawn from a
random normal distribution with a mean of zero and standard deviation of 0.05. We simulated fixed
effects from a random uniform distribution based off the empirical minimum and maximum values for
each variable.

The best supported empirical model for coyote was the model containing broadleaf, shrubs,
industrial and roads (Table 1), but for moose was the model containing only broadleaf and industrial
(Table 2). In both these cases, not all the variables were present in the top models and mixed forest was
not present in either. Therefore, to provide a complete dataset and allow construction of the full candidate
model set, we simulated data for missing variables based on a random normal draw with a mean of zero
and standard deviation of 0.25. In doing so, we assumed a small, yet non-zero effect for each of the

variables not present in the empirical top model.
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Table 1 Candidate models examining landscape features on monthly coyote presence/absence.

Model df LogLik AlICc AAICc | Weight
broadleaf + industrial + roads + shrubs 6 -989.6 1991.3 0 0.48
broadleaf + industrial + mixed + roads + shrubs 7 -989.2 1992.8 1.47 0.23
industrial + roads + shrubs 5 -991.7 1993.5 2.18 0.16
industrial + mixed + roads + shrubs 6 -991.1 1994.3 3.04 0.11
industrial + mixed + roads 5 -995.0 2000.2 8.88 0.01
industrial + roads 4 -996.2 2000.4 9.15 0
broadleaf + industrial + roads 5 -995.4 2001.0 9.71 0
broadleaf + industrial + mixed + roads 6 -994.5 2001.1 9.84 0
industrial + shrubs 4 -1005.2 2018.5 27.15 0
broadleaf + industrial + shrubs 5 -1004.4 2018.9 27.65 0
industrial + mixed + shrubs 5 -1004.5 2019.1 27.84 0
broadleaf + industrial + mixed + shrubs 6 -1003.9 2020.0 28.74 0
broadleaf + roads + shrubs 5 -1005.0 2020.2 28.93 0
industrial + mixed 4 -1006.4 2020.9 29.62 0
industrial 3 -1007.5 2021.0 29.72 0
broadleaf + mixed + roads + shrubs 6 -1004.8 2021.8 30.53 0
broadleaf + industrial 4 -1007.2 2022.5 31.25 0
broadleaf + industrial + mixed 5 -1006.3 2022.7 31.38 0
roads + shrubs 4 -1008.5 2025.1 33.78 0
mixed + roads + shrubs 5 -1007.9 2026.0 34.66 0
broadleaf + roads 4 -1013.4 2034.8 43.51 0
broadleaf + mixed + roads 5 -1012.4 2034.9 43.58 0
mixed + roads 4 -1013.5 2035.1 43.77 0
roads 3 -1014.8 2035.6 44.27 0
broadleaf + shrubs 4 -1036.4 2080.9 89.65 0
shrubs 3 -1037.8 2081.7 90.42 0
broadleaf + mixed + shrubs 5 -1036.0 2082.1 90.75 0
mixed + shrubs 4 -1037.1 2082.3 90.95 0
mixed 3 -1039.6 2085.2 93.88 0
null 2 -1040.8 2085.6 94.28 0
broadleaf + mixed 4 -1039.2 2086.4 95.12 0
broadleaf 3 -1040.2 2086.4 95.15 0
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Table 2 Candidate models examining landscape features on monthly coyote presence/absence.

Model df LogLik AlCc AAICc | Weight
broadleaf + industrial 4 -688.4 1384.9 0 0.18
broadleaf + industrial + shrubs 5 -687.4 1384.9 0.05 0.18
broadleaf + industrial + mixed + shrubs 6 -686.7 1385.7 0.77 0.12
broadleaf + industrial + mixed 5 -687.9 1385.9 1.01 0.11
broadleaf + industrial + roads 5 -688.1 1386.3 1.44 0.09
broadleaf + industrial + roads + shrubs 6 -687.3 1386.8 1.89 0.07
broadleaf + industrial + mixed + roads 6 -687.6 1387.3 2.45 0.05
broadleaf + industrial + mixed + roads + shrubs 7 -686.6 1387.5 2.64 0.05
broadleaf + roads 4 -690.2 1388.5 3.65 0.03
broadleaf 3 -691.4 1388.8 3.92 0.03
broadleaf + shrubs 4 -690.6 1389.2 4.36 0.02
broadleaf + mixed + roads 5 -689.7 1389.5 4.66 0.02
broadleaf + roads + shrubs 5 -689.7 1389.6 4.74 0.02
broadleaf + mixed 4 -690.9 1389.9 4.97 0.02
broadleaf + mixed + shrubs 5 -690.0 1390.0 5.16 0.01
broadleaf + mixed + roads + shrubs 6 -689.1 1390.4 5.56 0.01
industrial + roads 4 -701.8 1411.8 26.91 0
industrial 3 -703.0 1412.1 27.18 0
roads 3 -703.2 1412.4 27.49 0
industrial + mixed + roads 5 -701.5 1413.2 28.34 0
industrial + shrubs 4 -702.7 1413.5 28.61 0
industrial + mixed 4 -702.7 1413.5 28.65 0
industrial + roads + shrubs 5 -701.7 1413.6 28.73 0
mixed + roads 4 -702.9 1413.8 28.91 0
roads + shrubs 4 -703.1 1414.3 29.45 0
industrial + mixed + shrubs 5 -702.3 1414.8 29.94 0
null 2 -705.5 1415.0 30.06 0
industrial + mixed + roads + shrubs 6 -701.4 1415.0 30.09 0
mixed + roads + shrubs 5 -702.8 1415.7 30.83 0
mixed 3 -705.2 1416.4 31.53 0
shrubs 3 -705.2 1416.6 31.66 0
mixed + shrubs 4 -704.9 1417.9 33.03 0
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We simulated 100 datasets containing three, six, and twelve landscape units (random effect levels), with
40 camera sites each (n = 120, 240, and 480, respectively), and for each dataset we reconstructed the full
candidate set of models as described above. For each dataset and landscape unit sample size, we identified
the top model, and calculated the proportion of simulations where each model was identified as top. Next,
from the “true” model in each simulation we extracted the fixed and random effect estimates and
visualized their distribution with varying landscape unit number compared to the known empirical value.
All data manipulation was done in R Studio v4.4.1 (R Core Team 2017) using packages glmmTMB for
model construction (Magnusson et al. 2017), dp/lyr for general data manipulation (Wickham et al. 2015),
MuMin for model selection (Barton 2009), and ggplot2 for data visualization (Wickham 2016).
Results
Model selection uncertainty

The correct top model for coyote was identified in increasing proportion of simulations with
increasing number of landscape units: 0.17 for three arrays, 0.42 for six arrays, and 0.51 for twelve arrays
(Figure 3). For moose, the correct top model was identified as top in roughly similar proportion of
simulations: 0.14 for three arrays, 0.16 for six arrays, and 0.10 for twelve arrays (Figure 4). However, for
both species uncertainty in model selection decreased with increasing array number. The number of
models selected as top within simulations for coyote was 11 for three arrays, 8 for six arrays, and six for
twelve arrays, while for moose was 23 for three arrays, 13 for six arrays, and eight for twelve arrays.

Given that the candidate models were nested in nature, it is also useful to consider the proportion
of times the top model contained the fixed effects of interest. For coyotes, models containing all four
terms for broadleaf, industrial, mixed, and shrubs were selected correctly in 30% of cases for three arrays,
55% for six arrays, and 74% for twelve arrays. For moose, models containing the two terms broadleaf and

industrial were selected in 64% of cases for three arrays, 94% for six arrays, and 100% for twelve arrays.
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Figure 3. Proportion of simulations (n = 100) for coyotes in which each model was identified as top

based on AICc. Data simulated based on the empirically identified top model of broadleaf +

industrial + roads + shrubs, with varying number of levels for the array random effect, A) three
landscape units, B) six landscape units, and C) twelve landscape units.
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Figure 4. Proportion of simulations (n = 100) for moose in which each model was identified as top
based on AICc. Data simulated based on the empirically identified top model of broadleaf +
industrial, with varying number of levels for the array random effect, A) three landscape units, B)
six landscape units, and C) twelve landscape units.
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Model Parameter Estimate Uncertainty

Increasing the number of landscapes led to more precise parameter estimates for both coyote (Figure 5)

and moose (Figure 6). In some cases, using only three arrays led to both negative and positive estimates in

coyote for broadleaf (Figure 5A) and shrubs (Figure 5D), but increasing the number of arrays removed

this negative bias (broadleaf: Figure5 F, K, shrubs Figure 51, N). For all models we observed a decrease in

parameter estimate variance with increasing number of landscapes (Table 3).

Table 3 Variance in fixed and random parameter estimates from the simulated models for moose

and coyote
Mod'el Effect Parameter 3 Landscapes 6 Landscapes | 12 Landscapes
Species Type
Fixed Broadleaf 0.015 0.007 0.004
Moose Fixed Industrial 0.004 0.002 0.0008
Random | Landscape Unit 0.158 0.101 0.038
Fixed Broadleaf 0.006 0.004 0.002
Fixed Industrial 0.001 0.0006 0.0004
Coyote Fixed Shrubs 0.006 0.002 0.002
Fixed Roads 0.006 0.002 0.0008
Random | Landscape Unit 0.09 0.04 0.01
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industrial (D, E, F), roads (G, H, I), shrubs (J, K, L), and the landscape unit random effect (M, N,
O). Dashed line in each plot represents the mean estimate from the original empirical top model.
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Discussion

As the popularity of camera traps grows globally (Fisher 2025) the pooling of data across research
projects has led to macroecological insights never before possible (Rich et al. 2017, Burton et al. 2024,
Devarajan et al. 2025). Expanding the geographic and ecological extent of sampling, as well as sample
size, by networking camera arrays has obvious value. However, less well known is the impact on
modelling outcomes. We demonstrate the impact of expanding sampling to multiple camera arrays on the
outcomes of a commonly used analytical framework, as well as the importance of examining model
selection uncertainty with simulation. There were clear reductions in model selection uncertainty by
increasing the number of camera arrays (“landscape units”’) sampled within the oil sands monitoring
BADR design. For both moose and coyotes, we show reduced uncertainty in model selection results, and
higher precision in estimates for effects of landscape features on monthly occurrence. Importantly, the
reduction in uncertainty was not purely a function of sampling variance, but also appeared to be
influenced by model complexity. The more complex coyote model, which included four fixed effects
(broadleaf, shrubs, industrial, and roads) was selected as the top model even with only three arrays, which
likely reflected overfitting where more complex models can spuriously outcompete reduced models in
small datasets. By increasing landscape units in the sample, selecting models with the parameters of
interest increased. For moose with a simpler top model (two fixed effects: broadleaf and industrial), the
true top model was identified less frequently. However, models containing these key parameters were
more consistently recovered.

Reducing sampling variance through increasing the number of landscape units had a clear effect
of increasing precision of model parameter estimates. This was particularly important for coyotes, where
estimates of the broadleaf and shrub parameters included both negative and positive effects with only
three landscape units. These biases were reduced with increasing landscape units, which shows the danger
of making broad inferences from a few landscapes. While parameter estimates from model selection
approaches should be interpreted with caution (Arif and MacNeil 2022), biases in estimates make

ecological inferences challenging or potentially nonsensical.
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Given the ongoing conservation crisis and the need to properly allocate time and resources to
ecological research that informs effective conservation decisions (Martinez-Harms et al. 2024), these
simulation results have practical implications for addressing uncertainty in ecological research. Clearly
increasing sampling effort reduces uncertainty due to sampling variance and can help increase precision.
However, this does not mean smaller scale studies should be overlooked, as landscape-specific insights
from individual camera arrays provide valuable local insights (Ethier et al. 2024b, Gaston et al. 2024).
These local results provide insights into specific biological relationships, which can then be tested or
accounted for in larger synthetic analyses.

One important caveat to this study is the assumption that the original top empirical model
represents a valid data-generating structure. We incorporated missing terms for each species so as to not
assume a true “zero” effect, recognizing that all candidate models are nothing more than reasonable
approximations (Burnham and Anderson 2002b). Concordantly, when the empirical top model already
contains uncertainty (e.g. moose, see Table 2), it may be more important to validate model selection and
incorporate additional sampling units. However, when initial results are more certain (e.g. coyote, see
Table 1), model selection uncertainty will be reduced. While no single dataset will completely eliminate
uncertainty, the clear benefits in reducing model selection uncertainty and improved parameter precision
with increasing landscape unit number highlight the value of larger, more comprehensive sampling
approaches in ecological research.
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