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Abstract

Estimating animal abundance and density are fundamental goals of many
wildlife monitoring programs. Camera trapping has become an increasingly
popular tool to achieve these monitoring goals due to recent advances in
modeling approaches and the capacity to simultaneously collect data on multi-
ple species. However, estimating the density of unmarked populations con-
tinues to be problematic due to the difficulty in implementing complex
modeling approaches, low precision of estimates, and absence of rigor in test-
ing of model assumptions and their influence on results. Here, we describe a
novel approach that uses still image camera traps to estimate animal density
without the need for individual identification, based on the time spent in front
of the camera (TIFC). Using results from a large-scale multispecies monitoring
program with nearly 3000 cameras deployed over 6 years in Alberta, Canada,
we provide a reproducible methodology to estimate parameters and we test
key assumptions of the TIFC model. We compare moose (Alces alces) density
estimates from aerial surveys and TIFC, including incorporating correction
factors for known TIFC assumption violations. The resulting corrected TIFC
density estimates are comparable to aerial density estimates. We discuss the
limitations of the TIFC method and areas needing further investigation,
including the need for long-term monitoring of assumption violations and the
number of cameras necessary to provide precise estimates. Despite the chal-
lenges of assumption violations and high measurement error, cameras and the
TIFC method can provide useful alternative or complementary animal density
estimates for multispecies monitoring when compared to traditional monitor-
ing methods.
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INTRODUCTION

Reliable estimates of animal abundance and changes in
abundance over time and space are a fundamental com-
ponent of many ecological studies and monitoring pro-
grams (Mace et al., 2008; Mills, 2007). To estimate the
abundance of mid- and large-sized mammals, researchers
have developed multiple sampling techniques, including
those that rely on direct visual detections (e.g., aerial
surveys) or evidence of past presence (e.g., snow tracking
and scat counts) (Wilson & Delahay, 2001). Because
they are easy to implement and relatively less invasive,
remote cameras have emerged as a popular alternative
or complementary tool for wildlife monitoring (Amin
et al.,, 2016; Burton et al., 2015; Steenweg et al., 2017;
Trolle et al., 2008).

As remote camera use has increased, so too have the
analytical approaches to estimating abundance with camera
data (Gilbert et al., 2021; Royle et al., 2009). Early applica-
tions focused on species with marked populations and
applied well-established capture-recapture techniques to
estimate population size (Karanth & Nichols, 1998). How-
ever, individual identification is impossible or impractical
for many applications and species (Palmer et al., 2018;
Rayan et al, 2012), warranting alternative approaches.
Methods proposed to allow estimation of abundance for
unmarked animal populations include space-to-event
(Moeller et al., 2018), distance sampling (Howe et al., 2017),
and spatial count models (Chandler & Andrew Royle, 2013;
Gilbert et al., 2021). Rowcliffe et al. (2008) proposed the ran-
dom encounter model (REM), which estimates density as a
function of the encounter rate (measured by the number of
images collected per unit time), animal movement speed,
and the area of the camera’s detection viewshed. Accurate
measurement of animal speed is a key challenge hindering
widespread adoption of the REM because it requires either
telemetry data or intensive observations of behavior
(Caravaggi et al, 2016; Gilbert et al, 2021; Rovero &
Marshall, 2009; Rowcliffe et al., 2016; Zero et al., 2013). To
address this limitation, Nakashima et al. (2018) proposed a
modification to the REM that incorporates “staying time”—
the time spent in the camera detection zone—as a proxy for
movement speed: the random encounter and staying time
(REST) model. Because staying time is inversely propor-
tional to movement speeds, it can be substituted as a model
parameter. Staying time can be measured from images or
video collected by remote cameras (Nakashima et al., 2018).
This modification improves the accessibility of the REM
approach to practitioners, but does not change sampling
design considerations. Importantly, both models require
representative (or random) placement of cameras relative to
animal movement in order to obtain unbiased estimates of
abundance (Nakashima et al., 2018).

While REST eliminates the need to measure animal
movement speed, its implementation is mathematically
challenging (Bessone et al., 2020) and requires video, which
limits its usefulness for most camera trap programs. Two
recent studies make use of data collected by cameras to
measure animal staying time, but do not require parameter-
ization of separate encounter rates and staying times
(Laurent et al., 2021; Warbington & Boyce, 2020). War-
bington and Boyce (2020) called this method time in front
of the camera (TIFC), a term that we adopt here. TIFC
treats camera image data as quadrat samples and can be
used to estimate the density of unmarked animal
populations directly from still image camera traps. This
method has also been tested in principle by Garland
et al. (2020) using human volunteers.

In this paper, we describe the underlying theory of
the TIFC method, outline how it can be operationalized,
and explore potential biases that could arise under typical
field conditions. First, we explain the TIFC method as a
modification of traditional quadrat sampling, and identify
the information required to apply TIFC density estima-
tion using motion-activated cameras that collect still
images. We also discuss the use of lure to increase detec-
tion rates, and how this technique can be integrated into
a monitoring program. Next, we outline key assumptions
of the TIFC model: random or representative location of
the cameras relative to animal movement, no influence
of the cameras on animal movements, and reliable detec-
tion of animals in at least part of the camera field-of-
view. We illustrate how these three assumptions pose
different limitations to our results, and suggest potential
ways to measure them and correct for violations. As an
example, we focus on the results for moose (Alces alces),
but highlight other species that show different patterns in
these violations. Additional results for all species com-
monly detected by our cameras are included in Appendi-
ces S1-S6. Finally, we compare moose density estimates
based on TIFC and aerial distance sampling surveys con-
ducted in Alberta, Canada, in order to understand how
TIFC performs relative to an established monitoring
approach.

METHODS
Using cameras as quadrats

Density, which is the number of individuals per unit
area, is often estimated by ecologists using fixed-area
plots (“quadrats”) (Manly, 2014). For instance, if a
100-m? quadrat contains a single tree, then the density is
one tree per 100 m?. If the quadrat can be considered a
representative sample of a larger area, the density can
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then be extrapolated to apply to the greater area, for
example, 10,000 trees per km? in this example. Camera
traps can conceptually be considered a quadrat by cou-
nting the number of individuals within the camera’s
field-of-view (i.e., detection zone). If a camera has a field-
of-view of 100 m* and there is one animal continually
present in the field-of-view, then density is one animal
per 100 m? or 10,000 animals per km? in the broader
region that the camera represents. However, unlike trees,
animals move. To address this trait, we take advantage of
a unique feature of camera traps relative to typical quad-
rat sampling protocols: continuous sampling conducted
over long periods of time. We can therefore calculate the
number of animals in the field-of-view as the average
number of animals over time, including all the time
when no animal is present. If one animal is present for
1/10,000 of the total camera operation time, the density is
1/10,000 animals per 100 m?, or 1 animal per km? Two
animals present for the same duration would give two
animals per km?. Thus,

> (N-Tg)
Ar-To

D=

1)

where N is the number of individuals, T is the time in
the camera field-of-view, A is the area of the field-of-
view, and To is the total camera operating time. The
units are animal-time per area-time, which reduces to
animals per area. To determine density, the important
variable is total animal-time in the field-of-view, whether
that comes from one long visit by one individual, several
shorter visits from one individual, or several shorter visits
by different individuals. For a given density of animals,
this simple measure is independent of both home range
size and movement rates (Garland et al., 2020). If move-
ment rates were twice as fast, then an individual would
spend half as much time in the field-of-view, but would
pass by a camera twice as often. Similarly, if home ranges
were twice as large, an individual would be in a camera’s
field-of-view half as often, as there are twice as many
other places for it to be. However, twice as many animals
would have home ranges overlapping that camera.

Unlike traditional quadrat sampling, cameras have addi-
tional complexity because a camera’s field-of-view (the area
being sampled, A) is not fixed: the probability of an animal
triggering the camera decreases with distance (Rowcliffe
et al, 2011). In addition, converting the discrete images
taken by a motion-detection camera into total time in field-
of-view requires additional analysis, including adjusting for
the possibility that an animal leaves the field-of-view
between images and returns. In the next sections, we apply
distance sampling methods to estimate effective detection
distances and, by extension, the area surveyed by a camera,

which can vary between species, habitat types, and time of
year (Apps & McNutt, 2018; Buckland et al, 2015;
Hofmeester et al., 2019). We then address the TIFC compo-
nents of the TIFC model by converting discrete images into
TIFC. This procedure, and the analyses that follow, are pres-
ented as a workflow in a public repository that can be
accessed here: https://doi.org/10.5281/zenodo.5182172.

Data collection

We applied TIFC using remote camera data collected
throughout the province of Alberta, Canada. We used a
systematic-random sampling design, based on a grid pat-
tern of point locations spaced 20-km apart plus a random
offset up to 5.5 km to maintain confidentiality of exact
locations. At each of these sites, we placed four Reconyx
PC900 Professional Hyperfire cameras at each corner of a
square with 600-m long sides (ABMI, 2021). We used a
scent lure (O’Gorman Long Distance Call) at two of the
four camera deployments at each site. Cameras were
mounted to either a tree or a stake, with the base of the
camera unit 1 m from the ground. We placed a 1 m tall
brightly colored pole 5 m in front of each camera to facili-
tate effective detection distance analysis (discussed below).
We aimed the camera at the base of the pole. Data were col-
lected from 2014 to 2020, totaling 2990 cameras across
799 sites. Cameras were deployed between November and
February, and retrieved later that year in July or August.
The median number of operational days was 149 per cam-
era deployment (mean of 162, SD of 59).

Components of the model
Effective area of the camera field-of-view (Ag)

Effective detection distance (EDD) is the distance from the
camera that would give the same number of detections if all
animals up to that distance were perfectly detected and
none were detected farther away (Buckland, 1987). We used
the pole placed 5 m from the camera to divide animals in
images into two distance bins: <5 m from the camera and
>5 m from the camera. We excluded images of animals too
close to the pole to classify or animals actively investigating
the pole or camera. We only used images from unlured
cameras to estimate the EDD. From these data,

EDD (m) = m 2)

where p.sy, is the proportion of images that contain ani-
mals between the pole and the camera. The calculation
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assumes that we detected all animals that occurred
within 5 m of the camera (tested below in “Assumption
3”). The area of the camera’s field-of-view was then cal-
culated as:

Area (m?) — FX EPD’ @) (3)
360

where the angle of view, a, for the Reconyx PC900 Profes-
sional Hyperfire cameras used in this study was 40°
(Reconyx, 2017). We expected EDD and area of the field-of-
view to vary by species, habitat type, and season because of
the effects of snowpack, leaf phenology, and the thermal
environment for infrared sensors (Hofmeester et al., 2019).
To test for this variation, we considered eight broad habitat
types (upland coniferous forest, upland deciduous forest,
grassland, shrub, lowland forest, lowland grass, water, and
human footprint) and two seasonal periods (“summer”
between April 16 and October 15, and “winter” being the
rest of the year). We used a BIC-weighted model averaging
framework to compare the models of EDD by habitat type
and season for each species or species group and obtain
EDD estimates (Appendix S1).

For moose, EDD was generally estimated to be 6.5 m
(90% CIL: 6.32-6.67 m) across all habitat types and both sea-
sons, producing an area of 14.7 m? (90% CI: 13.9-15.5 m?)
for the camera field-of-view. Other species had EDD that
varied by habitat type, typically with longer EDD in more
open habitats (Appendix S1). The EDD for moose may be
underestimated because moose spend considerable time
investigating the camera (discussed further under “Assump-
tion 2”). Although investigating images were not used in
the EDD calculation, investigative behavior may inflate the
number of noninvestigative images near the camera.

Using a single pole to create two distance bands was a
minimal-effort approach to estimating EDD, but allowed us
to collect enough data to compare estimated EDD across
habitat types and seasons for multiple species. Directly mea-
suring the distance and angle from the camera at first
detection by tracking movement paths through the camera
field-of-view provides a more refined EDD estimate, but
requires significantly more effort (Rowcliffe et al., 2011).
Using additional markers to delineate multiple distances
in the field-of-view, as recommended by Hofmeester
et al. (2017), would also contribute to a more finely delin-
eated detection distance curve, but was not operationally
feasible given our scale of deployment.

Time in field-of-view (Tg)

Motion-activated cameras record animals as a series of
discrete time-stamped images. To implement the TIFC

approach, practitioners must convert these images into
the total time the animal was in the field-of-view.
Because we only collected still images, we needed to
account for whether an animal left the field-of-view
between two sequential images. Examining all images for
evidence of the animal leaving or staying between images
was too time-intensive given the high volume of images
collected. Instead, we examined sequential images from a
subset of cameras to develop rules to apply to all images.
For this subsample of images, we tagged whether the ani-
mal left the field-of-view in one image and returned in
the next, or if it stayed in the field-of-view with no evi-
dence of leaving in the interim. The classification was
based on the position and behavior of the animal in the
images before and after the interval. We found that for
intervals of <20 s between images, the animal had almost
always stayed in the field-of-view, while the animal had
almost always left the field-of-view for intervals >120 s,
regardless of species. For intervals between 20 and 120 s,
we developed species-specific models of the probability
that an animal left the field-of-view (Appendix S2).

For moose, we examined a random sample of 1212
images. Of these, 30% of intervals of 20 s had evidence of
the animal leaving the field-of-view and returning, rising
to 80% for intervals of 120 s (Figure 1). Most other species
showed similar relationships, with the notable exception
that black bears (Ursus americanus) were only found to
have left the field-of-view 40% of the time by the
120-s mark.

To convert discrete images into time in the camera
field-of-view,

Left

0.8

0.6

0.4

Probability of leaving field-of-view

0.2

(7]
.
t
<
@
o

20 40 60 80 100 120
Length of gap between images (s)

FIGURE 1 Estimated probability of moose leaving the camera
field-of-view based on the length of the interval between sequential
images. A total of 1212 images were sampled to construct this
model
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1. We defined a “series” as consecutive images of a spe-
cies with intervals <120 s between any two consecu-
tive images. An intermediate image without the
species present ends the series, as do consecutive
images showing an animal leaving and returning to
the field-of-view (only applies to the sample of images
tagged to support the development of the probability
of leaving models). A series may range from a single
image to hundreds of images.

2. We calculated total time in field-of-view for each series
as the sum of time of all intervals <20 s, plus the sum
of intervals 20-120 s multiplied by (1 — probability of
leaving) for that species and interval length. For exam-
ple, if a series consists of three moose images separated
by 5, 10, and 30 s, and the model for moose indicates
there is a 40% chance that it would leave during a gap
of 30 s, then the cumulative time for that series would
be calculated as 5 + 10 + (30 x [1 — 0.4]) = 33 s.

3. We then account for time the animal is in the field-
of-view before the first image and after the last
image by adding to each series the time equivalent
to the species-specific average number of seconds
between consecutive images. For moose, this is
4.54 s. This additional time in the field-of-view is
also added to series with a single image, which
would otherwise have a time in the field-of-view
of 0's.

4. When multiple animals are simultaneously in the
field-of-view, we use the average number of animals
in images in the series as N in Equation (1) for that
series.

Time camera is operating (To)

For most camera deployments, the total operating time is
the time from initial setup to final collection. However,
some cameras fail before recovery, most often because they
run out of memory space or battery power, but sometimes
because they are physically damaged. We programmed the
cameras to also take time-lapse images every 2 h to differen-
tiate between cameras without animals in the field-of-view
and cameras that had failed and identify timing of any fail-
ures. Cameras may also become displaced, and we consider
the camera too displaced to use the images if the 5 m pole
is no longer in the field-of-view or if the camera is tilted
>30° from horizontal, because these conditions greatly
affect the EDD. We divided the time cameras are operating
into two seasonal periods, summer (April 16 to October 15)
and winter (October 16 to April 15), to account for changes
in species seasonal movement patterns, habitat use, and
detectability. The total numbers of days operating in each
season were calculated.

Calculating density

Using Equation (1), we calculated the density of each spe-
cies at each camera. First, we calculated density separately
for each of the two seasons, using the estimate of a species’
time in the camera field-of-view during the season, the area
of the camera field-of-view (based on seasonally adjusted
and habitat-specific EDD), and the camera operating time
during that season. Next, we averaged the two seasonal esti-
mates together for a yearly density estimate at each camera.
For moose, the distribution of these estimates was
extremely right-skewed, with the majority of cameras
recording zero density (no detections), low densities at some
cameras (one or a few individuals briefly passing by), and
high densities at a small number of cameras (one or more
individuals spending large amounts of TIFC) (Figure 2). Of
the 2990 cameras used in this study, 838 recorded a moose
detection.

Testing assumptions of the TIFC method

In this section, we examine three assumptions of TIFC
required to estimate the absolute density of a species.
Failure to meet these assumptions will produce biased

estimates of density. However, even if one or more of
these assumptions is violated, the resulting estimates

500

300

200

Number of cameras

100

Camera density (animals per square kilometer)

FIGURE 2 Distribution of calculated moose densities across
the 2990 cameras. Seventeen cameras with density values above
10 animals per km? were omitted from the figure (max of

52 animals per km?). The leftmost bar, containing density values
between 0 and 0.12, consisted of 2232 cameras, but the figure was
truncated at c. 500 to more clearly visualize bars with lower
numbers of cameras. Note that these densities are accurate only to
the extent that the assumptions discussed below are met
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may still be useful as relative densities for comparisons in
ecological applications, provided that the biases are con-
sistent, or measurable and correctable, across the units of
comparison. For instance, species’ habitat models involve
comparison between habitat types. Density estimates
derived from camera data may still provide ecologically
meaningful results for this purpose provided that these
assumptions are either violated in equal ways across
examined habitat types, or in measurable ways such that
the different violations in different habitat types can be
corrected.

Assumption 1: Representative sampling of
microhabitats

As with any quadrat sampling, the areas sampled must
be a random, stratified random, or otherwise representa-
tive sample of the region for which inferences are being
made (Fisher, 1925). At a landscape scale, our sampling
design meets this expectation, as cameras are deployed in
a random-systematic manner across the province of
Alberta (Shank et al., 2002). However, because individual
cameras effectively sample a very small area (approxi-
mately 15-30 m?), random sampling must also be consid-
ered at this “microhabitat” scale. Because animals show
strong preference for, or avoidance of, particular micro-
habitats, nonrandom sampling could produce strongly
biased estimates of absolute density that cannot be
applied to the greater landscape.

In practice, cameras often cannot be placed in truly
random microhabitats. In forested areas, cameras are typ-
ically placed in areas that have an open field-of-view for
5 m, because cameras facing tree trunks or thick patches
of trees or shrubs are not useful for data collection. The
selection for camera sites in open microhabitats of forests
will bias the estimates of absolute density to the extent
that animals prefer or avoid those more open areas
within forests. Relative density for habitat modeling will
be biased if animals show different degrees of preference
or avoidance for more open areas in different forested
habitat types (e.g., deciduous vs. coniferous stands).

We tested how TIFC density estimates of species dif-
fered between open versus densely treed microhabitats in
two upland forest types: deciduous (including deciduous-
dominated mixedwood) and coniferous (ABMI, 2018).
Using site photographs, we classified the field-of-view of
a random sample of camera deployments in each forest
type as either typical treed forest (i.e., a field-of-view with
vegetation density similar to that in the surrounding for-
est) or open (i.e., no trees within the 5 m zone and the
area being more open and vegetatively different from
more distant surrounding forest). We further classified

open sites as either productive (dense herb or shrub
cover) or low productive (sparsely vegetated), expecting
that some species’ preferences for openings might differ
relative to productivity of the openings (Appendix S3). Of
the 163 sampled deployments in deciduous stands,
105 were classified as open (64%), and of these open sites,
83 were productive (51% of total). A higher proportion of
the 160 sampled deployments in coniferous stands
were open, but of those 118 (74%) open sites, 51 (32%
of total) were classified as low productive. For each for-
est type, we calculated the densities of common mam-
mal species using the TIFC method described above in
each of the three microhabitat categories (typical,
open-productive, and open-low productive), factoring
out the effect of lure (see “Incorporating Lure”). We
estimated CIs via bootstrapping with the camera
deployment as the resampling unit.

For moose, cameras in productive openings of decidu-
ous forest produced density estimates 1.62 times higher
than those in typical treed microhabitats (90% CI: 0.82-
3.19), while low-productive openings provided density
estimates 0.48 times as high as treed microhabitats (90%
CL: 0.13-1.18) (Figure 3a). Productive openings in conif-
erous stands produced density estimates 3.60 times as
high as typical treed sites (90% CI: 1.58-8.81), whereas
low-productive openings in coniferous stands had densi-
ties similar to treed sites (Figure 3b).

We cannot directly calculate the effect of these
assumption violations, because we do not know what
proportion of each broad stand type is composed of each
microhabitat. To illustrate the magnitude of these poten-
tial biases, we therefore use a hypothetical example in

(a) Deciduous forest (b) Coniferous forest

ax
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FIGURE 3 Average moose densities at deployments located in
typical treed versus open (low productive [low] and productive)
microhabitats in both deciduous (a) and coniferous (b) forest
stands. Error bars reflect 90% CIs
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which low-productive and productive openings each
occupy 5% of the total area of the two broad stand types.
Using the results from Figure 3, we calculated the
expected density estimates with representative sampling
versus the proportions of opening-biased deployments in
our sampling (64% in deciduous, 74% in coniferous). Our
sampling biased toward open microhabitats would result
in density estimates for moose that are 1.24 times the
density from representative sampling in deciduous forest,
and 1.56 times greater in coniferous forest. Relative den-
sities between the two broad forest types also change.
With representative sampling, moose density in decidu-
ous forest would be 2.49 times the density in coniferous
forest, whereas biased sampling resulted in deciduous
forest with estimated densities 1.97 times that in conifer-
ous forest. This is based on the hypothetical example of
5% low-productive openings and 5% productive openings,
and the true proportions of these openings may be higher
or lower. To understand the exact magnitude of the bias
introduced by selective sampling of open microhabitats,
further work is required to obtain sufficiently detailed
landscape information. Advances in remote sensing may
soon be able to provide the information required to prop-
erly calibrate these results, but current geospatial data
are generally not available at the resolution required.
Additional details of this test, including example images
of the different treed/open categories, are presented in
Appendix S3.

Assumption 2: Movement not affected by the
camera

Most animal detections last only a few seconds as the ani-
mal crosses the camera field-of-view, with a small pro-
portion lasting far longer. However, if animals spend
even a few seconds investigating the camera or associated
equipment (e.g., the 5 m pole) on each visit, the total time
in the field-of-view will be substantially inflated and
result in an upwardly biased density estimate.

We assessed the overall proportion of time in the
field-of-view that animals spent investigating the camera
or 5 m pole, including whether this proportion differed
by broad habitat types (Figure 4). We measured investiga-
tive behaviors directly based on a subset of randomly
selected series of images for each species. For moose, we
selected 274 series, about 10% of the total., We classified
each image in each series based on the behavior of the
animal: (1) actively investigating or interacting with the
pole or the camera, (2) behavior associated with investi-
gation, including traveling directly toward the pole or the
camera prior to investigating behavior, and/or lingering
around the pole or camera after investigating, and

(@) Investigating time only (b) Investigating and associated time
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FIGURE 4 Proportion of time in front of the camera that
moose spend investigating the camera and pole (a; Behavior 1), and
time spent investigating plus associated behaviors (b; Behaviors

1 and 2). Density factor is the corresponding increase to
downstream density estimates, based on the additional time spent
in the behaviors. Error bars represent 90% CIs

(3) natural behaviors appearing to be unaffected by the
pole or camera. Behavior 1 was generally unambiguous,
but Behavior 2 was more challenging to interpret, and it
is unclear how much of the time animals spent in Behav-
ior 2 would have been spent in the field-of-view if they
had not been attracted to the camera or pole.

Across all habitat types, moose spent 51% of their
total time in the field-of-view investigating the camera or
pole (Behavior 1; 90% CI: 46-55%) (Figure 4a). Proportion
of time in Behavior 1 was highest in grassland areas and
lowest in deciduous forest. If investigating time was addi-
tive to time that moose would have otherwise been in the
field-of-view, Behavior 1 increased the overall density
estimate by a factor of 2.02 (90% CI: 1.84-2.25), ranging
from 1.51 to 3.41 across habitat types (with correspond-
ingly wider ClIs). Combined, Behaviors 1 and 2 represen-
ted 67% of total time in field-of-view (90% CI. 62-71%),
with proportion of time highest in grass, shrub, and wet
habitats, and lowest in deciduous forest, coniferous for-
est, and human footprint (Figure 4b). Overall, including
both Behaviors 1 and 2 in the density calculations cor-
responded to a 3.00 times increase in density (90% CI:
2.62-3.47), with a range of 1.89-6.92 across habitat types
(with correspondingly wider CIs).

Among the species we detected, moose and black
bears (55%) spent the highest proportion of time in
Behavior 1. Most other species spent 0%-30% of their
time in the field-of-view directly investigating (Appendix
S4). For moose and black bears, violation of this
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assumption leads to a substantial overestimate of abso-
lute density. The differences between habitat types also
mean that the assumption was violated unequally, and
that relative density estimates required by habitat model-
ing would be affected. Correction factors for investigation
times can be used to correct for biases in TIFC in differ-
ent habitats. However, additional data collection would
help address the wide uncertainty in these corrections,
particularly if more habitat types needed to be included
for detailed habitat modeling. It is also unclear if density
corrections should be based strictly on direct investiga-
tion time, or whether the more ambiguous additional
time for associated behaviors should also be included.
Further details of this test, including results for other
common species and example images for each behavior,
are presented in Appendix S4.

Assumption 3: Perfect detection near the
camera

Calculation of the camera EDD, which is used to define
the area of a camera’s field-of-view, assumes perfect
detectability within 5 m of the camera. That is, when an
animal is within 5 m of the camera, it is assumed that
animal is always detected, and continues to be detected
for the full duration of its stay in that area. To test this
assumption, we conducted a paired camera experiment
to measure the proportion of animal occurrences <5 m
from the camera that were accurately detected. We
placed paired Reconyx PC900 Professional Hyperfire
cameras at the reindeer (Rangifer tarandus) enclosure of
the Edmonton Valley Zoo, which were the captive species
that most closely matched moose in terms of body size
and movement patterns. We set up one of the two cam-
eras using the standard motion-triggered protocol
described above, and we configured the second camera to
take time-lapse images continuously at 3-s intervals. We
mounted the cameras side-by-side, so that the time-lapse
camera provided a (near) continuous record of the same
area surveyed by the motion-triggered camera. Similar to
the standard protocol, we placed a pole 5 m in front of
the cameras. We used the images collected from both the
cameras to measure the proportion of reindeer occur-
rences within 5 m that were detected by the motion-
triggered camera.

Compared to the number of occurrences captured by
the time-lapse cameras, which we assume to be the true
number, the motion-triggered camera detected 95% of these
events. The missed detections all involved small parts of the
animal body (e.g., antler tines) at the extreme periphery of
the field-of-view, which may be a zone that is unreliably
detected by the PC900 Professional Hyperfire camera model

used (Apps & McNutt, 2018). These results suggest that spe-
cies similar to reindeer in both body size and movement
patterns (e.g., moose) are likely to be detected reliably
within the 5 m zone. Although not tested in our experi-
ment, vegetation cover, snow depth, air temperature, move-
ment speed, and body size may all impact the detection
rate. Unreliable detection due to these factors has been
identified as a concern with the PC900 Hyperfire cameras
(Urbanek et al., 2019), so additional field experiments will
be required to confirm whether this high rate of detection
within 5 m in a zoo setting is comparable to field sampling
or whether it holds for additional species. As demonstrated
by Apps and McNutt (2018), different remote camera
brands have innate differences in detection capabilities due
to mechanical design, and the influence of environmental
factors on performance can be expressed differently due to
these capabilities. Future studies should strive to evaluate
the performance of their specific camera model in similar
experiments and field tests.

Incorporating lure

For many species, and carnivores in particular, detections
at randomly located camera sites can be very low. Lure
or other attractants are often used to increase the number
of detections at cameras, which can help reduce the high
inherent measurement error of cameras (Holinda
et al., 2020). However, lures clearly violate the assump-
tion that animal movement is not influenced by the cam-
era deployment. Furthermore, differential attraction to
lures in different habitats would bias habitat models
based on camera data.

We deployed both lured and unlured cameras in a
paired design to calibrate lure effects for each species. As
described in “Data Collection,” each site used four cam-
eras spaced 600-m apart, two of which were lured. This
design allowed for a simple paired comparison of species’
occurrences and time in field-of-view. We examined
results for common species at 558 core sites from both
lured and unlured cameras (992 of each, with two pairs
at most sites) with similar total operating times. We sum-
marized the ratio of lured:unlured results by species in
three measures: (1) occurrence (presence/absence at the
camera over the entire deployment time); (2) density
given occurrence (density at only cameras where the spe-
cies was present); and (3) total density (the product of
occurrence and density given occurrence, that is, our
density estimates as described above). We used boo-
tstrapping to calculate CIs for each mean ratio, with site
as the resampling unit.

The ratio of the mean lured:unlured values for moose
occurrence was 1.07 (90% CI: 0.99-1.16), 1.17 (0.92-1.5)
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for density given occurrence, and 1.26 (0.98-1.62) for
total density. We found more substantial positive effects
of lure for other species, particularly fisher (Pekania
pennanti), red fox (Vulpes vulpes), and gray wolf (Canis
lupus) (Appendix S5). For these carnivore species, a
larger proportion of the effect on total density came from
the density given occurrence component, indicating that
lure was primarily effective for increasing the time ani-
mals spend in the camera field-of-view. Occurrence
increases due to lure tended to be smaller, which suggests
that animals are not being drawn in from large distances.
We use the total density ratios to correct the estimates of
densities at lured cameras to an unlured density
equivalent.

APPLICATION—MOOSE DENSITY
IN WILDLIFE MANAGEMENT
UNITS

We used moose images collected from the remote cam-
eras to illustrate regional density estimation using the
TIFC method and to compare TIFC and aerial survey
density estimates. Aerial surveys are currently the pri-
mary approach used by wildlife managers for monitoring
moose populations in the province of Alberta. Wildlife
Management Units (WMUs) are key spatial units for
wildlife management decisions in the province, such as
establishing hunting quotas and determining priority
areas for recovery actions. Since 2014, the Alberta provin-
cial government has used distance sampling (Buckland
et al.,, 2001; Thomas et al., 2002) on aerial ungulate sur-
veys to estimate moose densities in most WMUs (Peters
et al., 2014). Distance transect surveys are flown in win-
ter, with observers recording the perpendicular distance
from the transect to the observed moose. Moose density
in the WMU and associated precision of this estimate is
calculated with Distance software (Thomas et al., 2010).
The distance method assumes that animals are detected
with certainty along the transect line and that distances
are measured without error (Buckland et al., 2001). To
the extent that these assumptions are met, the results of
aerial surveys can be considered an unbiased estimate of
moose density in each WMU.

We obtained moose density estimates, including CIs,
from reports available on the Alberta Environment and
Parks website (AEP, 2021). We used only estimates based
on distance sampling and restricted our sample to aerial
surveys conducted between 2014 and 2020 in the boreal
region of the province (Figure 5). For two WMUs with
more than one survey completed during this time period,
we used the aerial survey density estimate that was clos-
est in time to the camera sampling done in those WMUs.

e  Core sites

- Supplemental sites
[ ] selected wmUs

02550 100 150 200
[ o= m e— W)

FIGURE 5 Location of Wildlife Management Units (WMUs)
with available data from at least 15 camera deployments (2015-
2020) and aerial surveys (2014-2020) within Alberta, Canada. Core
sampling sites have four cameras placed in a square, separated by
600 m. Supplemental sites have 25 cameras with a minimum 1-km
spacing within a 4 x 12-km area

To calculate mean moose density for each WMU
using the TIFC method, we used camera data from the
core sites described previously, as well as additional data
from five 4 x 12-km grids of 25 randomly placed cameras
each (minimum spacing 1 km) (Figure 5). The same cam-
era models and setup protocol were used at all deploy-
ments, including a reference pole at 5 m. The original
intent of these grids was to monitor boreal caribou
(Rangifer tarandus caribou) in specific herd ranges, but
we expect the placement of these cameras to be random
with respect to moose movement and therefore the data
collected to be useable for this analysis as well. We only
calculated density estimates for WMUs with at least
15 cameras deployed between 2014 and 2020. Confidence
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FIGURE 6 Relationship between moose density estimated
with cameras and with aerial surveys (solid line, shaded area is 90%
CL r* = 0.84). The dashed line represents the 1:1 relationship.
Error bars represent a 90% CI in both the aerial and camera
estimates

intervals were estimated as a zero-inflated log-normal
distribution using Monte Carlo simulation of both the
presence/absence (binomial) and density given occur-
rence (log-normal) components. We did not attempt to
match the years of aerial surveys with the years of cam-
era sampling with WMUs because this would severely
limit sample size; however, the majority of camera data
were collected within 2 years of the corresponding aerial
survey. A total of 29 WMUSs were used in this compari-
son, ranging in size from 1917 to 21,463 km” (mean of
6646 km®, SD of 4445 km®) (Figure 5). Moose density
estimates from both the aerial surveys and cameras for
each WMU are listed in Appendix S6.

To compare the two methods, we fit a linear regres-
sion of camera density as a function of the aerial survey
density (without intercept) in the R v.4.04 (R Core
Team, 2021). Because of the number of cameras per
WMU was highly variable (ranging from 15 to 217), we
weighted the WMUs in inverse proportion to the square
root of the number of cameras (as a proxy for the preci-
sion of camera estimate). Camera estimates were posi-
tively related to aerial survey estimates across WMUs
(r* = 0.84), but with wide uncertainty at the level of an
individual WMU (Figure 6). On average, camera-derived
moose density estimates were 2.47 times higher than
aerial survey estimates (90% CI: 2.13-2.81).

We expected higher estimates of moose density based
on camera data because of the assumption violations we
documented: moose were more abundant in microhabitat
forest openings that our cameras sampled selectively and

225
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FIGURE 7 Relationship between moose density estimated
with cameras and with aerial surveys (solid line, shaded area is the
90% CI, > = 0.80), with adjustment made to the camera estimates
to account for predicted time investigating the camera and pole.
The dotted line represents the 1:1 relationship. Error bars represent
90% CIs in both the aerial and camera estimates

they spent high proportions of time investigating the
camera and pole. We cannot correct for the former viola-
tion, because we do not know how much our cameras
overrepresented openings. However, we can correct for
investigating time. Using the measured direct investiga-
tion times by habitat type (Figure 4) and the known habi-
tat types of each camera used in the WMU estimates, we
removed the estimated time moose spent investigating
the camera and pole, and recalculated densities for each
camera. With this adjustment, density estimates from
camera traps were 1.3 times as high as estimates from
aerial surveys (90% CI: 1.1-1.5) (Figure 7). Higher initial
density estimates from cameras in WMUs may have
largely been due to this bias from moose investigating
cameras. However, there was still a significant amount of
uncertainty in the corrected relationship (which does not
include additional uncertainty from the correction factor
itself) and wide variation among individual WMUs.

DISCUSSION

In this paper, we describe the implementation of the
TIFC model to estimate animal density from motion-
activated cameras. We show how the parameters needed
to implement the model—effective detection distance
and time in field-of-view—can be estimated as part of a
camera-based monitoring program, and how important
assumptions can be tested using typical field-collected
data or with little additional effort.
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Quadrat sampling, which underlies the TIFC method,
is a familiar data collection approach for most ecologists.
However, unlike most quadrat surveys, camera quadrats
are tiny compared to the ranges of animals they are used
to monitor (a few square meters for a camera field-of-
view versus many hectares or square kilometers for some
mammal ranges). In our WMU camera data, there was
an average of 7.3 x 10~ ° moose in any one camera field-
of-view at any given time. The actual density of a species
in the field-of-view is almost always 0, but it is extremely
high for the few seconds that an animal is present. Cam-
era field-of-views are able to work as quadrats because
TIFC integrates extremely local density estimates over
long periods of time. However, this aspect of camera sam-
pling makes density estimates from cameras particularly
sensitive to violations of assumptions and subject to high
measurement error, much more so than in more familiar
quadrat applications.

Because of the small scale of the camera field-of-
view, nonrepresentative sampling is a risk, even if only
due to practical constraints on camera placement.
Cameras placed in small forest openings can estimate
moose densities up to three times as high as treed pat-
ches, reflecting small-scale movement or foraging deci-
sions by moose. In this case, we cannot meet the
assumption of truly random sampling, but we can cor-
rect for the bias, if we can collect auxiliary information
on the prevalence of small openings in different stand
types. Emerging remote sensing technology may help
address this limitation in future. The potential biases
would be more pronounced if cameras were intention-
ally placed in micro-sites with high animal abundance,
such as along game trails, ridges, or edges of water bod-
ies. The small field-of-view also means that animals
typically only spend a few seconds in front of the cam-
era, such that additional time spent investigating the
camera equipment can substantially increase density
estimates, as we demonstrated with moose.

Completely avoiding assumption violations is not pos-
sible practically, and it is therefore important to measure
and correct for them. We have shown that the detailed
information provided by images can be used to test many
of the critical assumptions inherent in camera sampling.
Examining the images can also identify other potential
biases and ways to account for them. For example,
images provide evidence that certain species follow the
tracks of field crews into the camera field-of-view shortly
after winter camera deployment, effectively attracting
animals to the camera and inflating densities. We reduce
the bias by having long deployment times, but we could
also use these images to directly measure that behavior
and how much it affects density compared to times later
in the deployment when snow has filled in the tracks left

by field crews. Preservation of much useful information
for testing assumptions is a benefit of camera surveys.

Good design and direct testing can reduce and correct
biases from many violations of assumptions, but we doubt
that they can ever be eliminated in camera sampling. Abso-
lute density estimates will always be affected to some
extent. Even relative densities, sufficient for many ecological
applications, require tests and corrections for differences in
how assumptions are violated among cameras or groups of
cameras being compared. We demonstrated this for broad
habitat types, but additional work is needed to apply correc-
tions (e.g., measuring prevalence of small openings), as well
as to collect additional information for more detailed habi-
tat types when finer habitat models are an objective. Addi-
tionally, monitoring programs are often directed toward
long-term monitoring of trends in species’ populations.
Using camera-based data for that purpose requires testing
that violations of assumptions do not change over time,
including as the landbase changes through development or
natural processes. For example, increased fires or human-
created openings may provide more browsing opportunities
for moose, possibly reducing their preference for small for-
est openings (i.e., a function response). We cannot antici-
pate the effects of all such changes, and therefore
recommend that ongoing assumption testing be built into
long-term monitoring programs.

A high level of measurement error is an additional
challenge for camera-based monitoring with the TIFC
method. In our moose example, WMUs had an average
of 52 cameras and 107 total moose-minutes in those cam-
eras’ fields-of-view. A single animal resting in front of a
single camera for 90 min would almost double the den-
sity estimate for a typical WMU. The highly skewed dis-
tribution of density estimates from individual cameras
(Figure 2) is a manifestation of the effect of the small
quadrat size of camera fields-of-view. Large numbers of
cameras, or longer deployment times, are therefore
needed to attain precise estimates (Figure 8). Alternative
sampling strategies that violate assumptions may be via-
ble options if calibrations can be developed, as we
showed with our operational calibration of paired lured
and unlured cameras. Lure increases the detections of
carnivores, which should increase precision, although
this benefit needs to be balanced against the additional
uncertainty introduced by the lure calibration estimate.
For long-term monitoring, we also need to be aware that
the effects of lures can change over time, which means
we need to continue operational calibration to measure
and compensate for any such changes. Placing some cam-
eras in high-use areas, such as game trails, may also be
an option for reducing uncertainty, as long as cameras
are deployed in a paired design that allows calibration to
sites more representative of the larger area. Because trail
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use may also change over time—for example, as develop-
ment creates more alternative travel routes in the
region—that calibration would also need to be replicated
in different landscape contexts and over time.

Despite the challenges of sensitivity to violations of
assumptions and high measurement error, cameras can
provide useful alternative or complementary estimates of
mammal abundance. In our example of moose densities
in WMUs of Alberta, that the relationship was close to
1:1 with aerial surveys after correcting for one assump-
tion violation was probably fortuitous, given the wide
uncertainty in individual WMU estimates, lack of correc-
tion for at least one other known bias, as well as uncer-
tainty and potential biases in the aerial surveys
themselves (Anderson & Lindzey, 1996; Caughley, 1974;
Opyster et al., 2018). Additionally, the camera sites were
not chosen to systematically sample a WMU (e.g., upland
areas versus lowland areas, or in relation to human dis-
turbance), thus the representativeness of camera sam-
pling for each WMU may not be complete, particularly
for WMUs with fewer cameras. Nonetheless, the cameras
did capture the same variation across the range of WMUSs
as the aerial surveys, with similar absolute densities over-
all. We are not recommending that cameras replace
aerial ungulate surveys, but a full comparison of the two
methods, including costs, risks, and benefits across a
range of situations would help determine if there are cir-
cumstances where there are advantages to one or the
other. One important consideration is that cameras can

provide density estimates for a variety of mammal spe-
cies, beyond those captured by aerial surveys. Well-
designed and rigorously tested camera surveys are likely
the only feasible option for concurrently monitoring a
range of medium-sized to large-sized mammal species.

ACKNOWLEDGMENTS

The Alberta Biodiversity Monitoring Institute provided
all field-related support. The collection and analysis of
the data in this project was funded by the Regional
Industry Caribou Collaboration (RICC), Alberta Environ-
ment and Parks (AEP), and the Oil Sands Monitoring
Program (OSM). It is independent of any position of the
OSM Program. The authors thank Simon Slater and
Andrew Braid from AEP for their help retrieving and
interpreting the aerial survey data, as well as Paul
Williams for his assistance and advice in setting up the
paired camera experiment at the Edmonton Valley Zoo.
They also thank an anonymous reviewer for their helpful
feedback on an earlier draft of the paper.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
Data and code (Becker, 2021) are available from Zenodo:
https://doi.org/10.5281/zenodo.5182172.

ORCID

Marcus Becker © https://orcid.org/0000-0002-4182-4044
Melanie Dickie  https://orcid.org/0000-0003-2177-2352
Camille Warbington ‘© https://orcid.org/0000-0002-2216-
655X

Robert Serrouya @ https://orcid.org/0000-0001-5233-6081
Stan Boutin ‘© https://orcid.org/0000-0001-6317-038X

REFERENCES

Alberta Biodiversity Monitoring Institute. 2018. “Alberta Wall-to-Wall
Vegetation Layer Including “Backfilled” Vegetation in Human
Footprints (Version 6).” Alberta, Canada. https://www.abmi.ca.

Alberta Biodiversity Monitoring Institute. 2021. “Terrestrial ABMI
Autonomous Recording Unit (ARU) and Remote Camera Trap
Protocols.” Alberta, Canada. https://www.abmi.ca.

Alberta Environment and Parks. 2021. “Aerial Wildlife Survey
Reports.” Alberta, Canada. https://www.alberta.ca/aerial-
wildlife-survey-reports.aspx.

Amin, R., A. E. Bowkett, and T. Wacher. 2016. “The Use of
Camera-Traps to Monitor Forest Antelope Species.” In Ante-
lope Conservation: From Diagnosis to Action. 190-216. Chiches-
ter: John Wiley & Sons, Ltd.

Anderson, C. R, and F. G. Lindzey. 1996. “Moose Sightability
Model Developed from Helicopter Surveys.” Wildlife Society
Bulletin 24: 247-59.

85U80|7 SUOWIWIOD) 8AITe1D) 8 edl|dde sy Aq pauenob afe sl O @SN JO S3|NnJ 10} A% 38Ul UO AB]1/ UO (SUONIPUOD-PUR-SWBI 0D A8 | 1M ATeIq 1 Bu 1 UO//:SANY) SUOIPUOD pue Swie | 81 88S *[€202/TT/62] UO A%iq1T8ulluo A8]IM ‘UOSINOIG BPeueD 8URIYd0D AG SO0 2ZS99/Z00T OT/10p/w00 A8 | i Areiqijpul|uo s feulno fess//sdny wo.j pepeojumod ‘v ‘220z ‘52680ST2


https://doi.org/10.5281/zenodo.5182172
https://orcid.org/0000-0002-4182-4044
https://orcid.org/0000-0002-4182-4044
https://orcid.org/0000-0003-2177-2352
https://orcid.org/0000-0003-2177-2352
https://orcid.org/0000-0002-2216-655X
https://orcid.org/0000-0002-2216-655X
https://orcid.org/0000-0002-2216-655X
https://orcid.org/0000-0001-5233-6081
https://orcid.org/0000-0001-5233-6081
https://orcid.org/0000-0001-6317-038X
https://orcid.org/0000-0001-6317-038X
https://www.abmi.ca
https://www.alberta.ca/aerial-wildlife-survey-reports.aspx
https://www.alberta.ca/aerial-wildlife-survey-reports.aspx

ECOSPHERE

| 13 of 14

Apps, P., and J. W. McNutt. 2018. “Are Camera Traps Fit for Pur-
pose? A Rigorous, Reproducible and Realistic Test of Camera
Trap Performance.” African Journal of Ecology 56: 710-20.

Becker, M. 2021. “mabecker89/tifc-method: Data and Code for
Becker et al. (2021) (v1.0.1).” Zenodo. Data Set and Code.
https://doi.org/10.5281/zenodo.5182172.

Bessone, M., H. S. Kiihl, G. Hohmann, I. Herbinger, K. P. N’Goran,
P. Asanzi, P. B. Da Costa, et al. 2020. “Drawn out of the
Shadows: Surveying Secretive Forest Species with Camera
Trap Distance Sampling.” Journal of Applied Ecology 57:
963-74.

Buckland, S. T. 1987. “On the Variable Circular Plot Method of Esti-
mating Animal Density.” Biometrics 43: 363-84.

Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L.
Borchers, and L. Thomas. 2001. Introduction to Distance Sam-
pling: Estimating Abundance of Biological Populations. Oxford:
Oxford University Press.

Buckland, S. T., E. A. Rexstad, T. A. Marques, and C. S. Oedekoven.
2015. Distance Sampling: Methods and Applications. New
York, NY: Springer International Publishing.

Burton, A. C., E. Neilson, D. Moreira, A. Ladle, R. Steenweg, J. T.
Fisher, E. Bayne, and S. Boutin. 2015. “Wildlife Camera Trap-
ping: A Review and Recommendations for Linking Surveys to
Ecological Processes.” Journal of Applied Ecology 52: 675-85.

Caravaggi, A., M. Zaccaroni, F. Riga, S. C. Schai-Braun, J. T. A.
Dick, W. 1. Montgomery, and N. Reid. 2016. “An Invasive-
Native Mammalian Species Replacement Process Captured by
Camera Trap Survey Random Encounter Models.” Remote
Sensing in Ecology and Conservation 2: 45-58.

Caughley, G. 1974. “Bias in Aerial Survey.” The Journal of Wildlife
Management 38: 921.

Chandler, R. B., and J. Andrew Royle. 2013. “Spatially Explicit
Models for Inference about Density in Unmarked or Partially
Marked Populations.” Annals of Applied Statistics 7: 936-54.

Fisher, R. A. 1925. Statistical Methods for Research Workers.
London: Oliver and Boyd.

Garland, L., E. Neilson, T. Avgar, E. Bayne, and S. Boutin. 2020. “Ran-
dom Encounter and Staying Time Model Testing with Human
Volunteers.” The Journal of Wildlife Management 84: 1179-84.

Gilbert, N. A., J. D. J. Clare, J. L. Stenglein, and B. Zuckerberg.
2021. “Abundance Estimation of Unmarked Animals Based on
Camera-Trap Data.” Conservation Biology 35: 88-100.

Hofmeester, T. R., J. M. Rowcliffe, and P. A. Jansen. 2017. “A Simple
Method for Estimating the Effective Detection Distance of Cam-
era Traps.” Remote Sensing in Ecology and Conservation 3: 81-9.

Hofmeester, T. R., J. P. G. M. Cromsigt, J. Odden, H. Andren, J.
Kindberg, and J. D. C. Linnell. 2019. “Framing Pictures: A
Conceptual Framework to Identify and Correct for Biases in
Detection Probability of Camera Traps Enabling Multi-Species
Comparison.” Ecology and Evolution 9: 2320-36.

Holinda, D., J. M. Burgar, and A. C. Burton. 2020. “Effects of Scent
Lure on Camera Trap Detections Vary across Mammalian
Predator and Prey Species.” PLoS One 15: €0229055.

Howe, E. J., S. T. Buckland, M. Després-Einspenner, and H. S.
Kiihl. 2017. “Distance Sampling with Camera Traps.” Methods
in Ecology and Evolution 8: 1558-65.

Karanth, K. U,, and J. D. Nichols. 1998. “Estimation of Tiger Densi-
ties in India Using Photographic Captures and Recaptures.”
Ecology 79: 2852-62.

Laurent, M., M. Dickie, M. Becker, R. Serrouya, and S. Boutin.
2021. “Evaluating the Mechanisms of Landscape Change on
White-Tailed Deer Populations.” The Journal of Wildlife Man-
agement 85: 340-53.

Mace, G. M., N. J. Collar, K. J. Gaston, C. Hilton-Taylor, H. R.
Akcakaya, N. Leader-Williams, E. J. Milner-Gulland, and S. N.
Stuart. 2008. “Quantification of Extinction Risk: IUCN’s Sys-
tem for Classifying Threatened Species.” Conservation Biology
22:1424-42.

Manly, B. 2014. “Standard Sampling Methods and Analyses.” In
Introduction to Ecological Sampling. 22-47. New York, NY:
Chapman and Hall/CRC.

Mills, L. S. 2007. Conservation of Wildlife Populations: Demography,
Genetics, and Management. Malden, MA: Blackwell Publish-
ing Ltd.

Moeller, A. K., P. M. Lukacs, and J. S. Horne. 2018. “Three Novel
Methods to Estimate Abundance of Unmarked Animals Using
Remote Cameras.” Ecosphere 9: €02331.

Nakashima, Y., K. Fukasawa, and H. Samejima. 2018. “Estimating
Animal Density without Individual Recognition Using Infor-
mation Derivable Exclusively from Camera Traps.” Journal of
Applied Ecology 55: 735-44.

Opyster, J. H., I. N. Keren, S. J. K. Hansen, and R. B. Harris. 2018.
“Hierarchical Mark-Recapture Distance Sampling to Estimate
Moose Abundance.” Journal of Wildlife Management 82:
1668-79.

Palmer, M. S., A. Swanson, M. Kosmala, T. Arnold, and C. Packer.
2018. “Evaluating Relative Abundance Indices for Terrestrial
Herbivores from Large-Scale Camera Trap Surveys.” African
Journal of Ecology 56: 791-803.

Peters, W., M. Hebblewhite, K. G. Smith, S. M. Webb, N. Webb, M.
Russell, C. Stambaugh, and R. B. Anderson. 2014. “Contrasting
Aerial Moose Population Estimation Methods and Evaluating
Sightability in West-Central Alberta, Canada.” Wildlife Society
Bulletin 38: 639-49.

R Core Team. 2021. R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing
https://www.R-project.org/

Rayan, D. M., S. W. Mohamad, L. Dorward, S. A. Aziz, G. R.
Clements, W. C. T. Christopher, C. Traeholt, and D. Magintan.
2012. “Estimating the Population Density of the Asian Tapir
(Tapirus indicus) in a Selectively Logged Forest in Peninsular
Malaysia.” Integrative Zoology 7: 373-80.

Reconyx. 2017. “Hyperfire High Performance Cameras Instruction
Manual.” https://images.reconyx.com/file/HyperFireManual.pdf.

Rovero, F., and A. R. Marshall. 2009. “Camera Trapping Photo-
graphic Rate as an Index of Density in Forest Ungulates.” Jour-
nal of Applied Ecology 46: 1011-7.

Rowrcliffe, J. M., J. Field, S. T. Turvey, and C. Carbone. 2008. “Estimat-
ing Animal Density Using Camera Traps without the Need for
Individual Recognition.” Journal of Applied Ecology 45: 1228-36.

Rowrcliffe, J. M., C. Carbone, P. A. Jansen, R. Kays, and B.
Kranstauber. 2011. “Quantifying the Sensitivity of Camera
Traps: An Adapted Distance Sampling Approach.” Methods in
Ecology and Evolution 2: 464-76.

Rowcliffe, J. M., P. A. Jansen, R. Kays, B. Kranstauber, and C.
Carbone. 2016. “Wildlife Speed Cameras: Measuring Animal
Travel Speed and Day Range Using Camera Traps.” Remote
Sensing in Ecology and Conservation 2: 84-94.

85U80|7 SUOWIWIOD) 8AITe1D) 8 edl|dde sy Aq pauenob afe sl O @SN JO S3|NnJ 10} A% 38Ul UO AB]1/ UO (SUONIPUOD-PUR-SWBI 0D A8 | 1M ATeIq 1 Bu 1 UO//:SANY) SUOIPUOD pue Swie | 81 88S *[€202/TT/62] UO A%iq1T8ulluo A8]IM ‘UOSINOIG BPeueD 8URIYd0D AG SO0 2ZS99/Z00T OT/10p/w00 A8 | i Areiqijpul|uo s feulno fess//sdny wo.j pepeojumod ‘v ‘220z ‘52680ST2


https://doi.org/10.5281/zenodo.5182172
https://www.r-project.org/
https://images.reconyx.com/file/HyperFireManual.pdf

14 of 14

BECKER ET AL.

Royle, J. A., J. D. Nichols, K. U. Karanth, and A. M. Gopalaswamy.
2009. “A Hierarchical Model for Estimating Density In
Camera-Trap Studies.” Journal of Applied Ecology 46: 118-27.

Shank, C., J. Schieck, and D. Farr. 2002. “The Alberta Biodiversity
Monitoring Program: Updated Technical Summary.” https://
abmi.ca/home/publications/101-150/116.

Steenweg, R., M. Hebblewhite, R. Kays, J. Ahumada, J. T. Fisher, C.
Burton, S. E. Townsend, et al. 2017. “Scaling-up Camera Traps:
Monitoring the planet’s Biodiversity with Networks of
Remote Sensors.” Frontiers in Ecology and the Environment
15: 26-34.

Thomas, L., S. T. Buckland, K. P. Burnham, D. R. Anderson, J. L.
Laake, D. L. Borchers, and S. Strindberg. 2002. “Distance Sam-
pling.” In Encyclopedia of Environmetrics, Vol 1, edited by
A. H. El-Shaarawi and W. W. Piegorsch, 544-52. Chichester:
John Wiley and Sons, Ltd.

Thomas, L., S. T. Buckland, E. A. Rexstad, J. L. Laake, S.
Strindberg, S. L. Hedley, J. R. B. Bishop, T. A. Marques, and
K. P. Burnham. 2010. “Distance Software: Design and Analysis
of Distance Sampling Surveys for Estimating Population Size.”
Journal of Applied Ecology 47: 5-14.

Trolle, M., A. Noss, J. Cordeiro, and L. Oliveira. 2008. “Brazilian
Tapir Density in the Pantanal: A Comparison of Systematic
Camera-Trapping and Line-Transect Surveys.” Biotropica 40:
211-7.

Urbanek, R. E., H. J. Ferreira, C. Olfenbuttel, C. G. Dukes, and G.
Albers. 2019. “See What You’ve Been Missing: An Assessment

of Reconyx® PC900 Hyperfire Cameras.” Wildlife Society Bulle-
tin 43: 630.

Warbington, C. H., and M. S. Boyce. 2020. “Population Density of
Sitatunga in Riverine Wetland Habitats.” Global Ecology and
Conservation 24: e01212.

Wilson, G. J., and R. J. Delahay. 2001. “A Review of Methods to
Estimate the Abundance of Terrestrial Carnivores Using Field
Signs and Observation.” Wildlife Research 28: 151-64.

Zero, V. H,, S. R. Sundaresan, T. G. O’Brien, and M. F. Kinnaird.
2013. “Monitoring an Endangered Savannah Ungulate,
Grevy’s Zebra Equus grevyi: Choosing a Method for Estimating
Population Densities.” Oryx 47: 410-41.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Becker, Marcus, David
J. Huggard, Melanie Dickie, Camille Warbington,
Jim Schieck, Emily Herdman, Robert Serrouya,
and Stan Boutin. 2022. “Applying and Testing a
Novel Method to Estimate Animal Density from
Motion-Triggered Cameras.” Ecosphere 13(4):
€4005. https://doi.org/10.1002/ecs2.4005

85U80|7 SUOWIWIOD) 8AITe1D) 8 edl|dde sy Aq pauenob afe sl O @SN JO S3|NnJ 10} A% 38Ul UO AB]1/ UO (SUONIPUOD-PUR-SWBI 0D A8 | 1M ATeIq 1 Bu 1 UO//:SANY) SUOIPUOD pue Swie | 81 88S *[€202/TT/62] UO A%iq1T8ulluo A8]IM ‘UOSINOIG BPeueD 8URIYd0D AG SO0 2ZS99/Z00T OT/10p/w00 A8 | i Areiqijpul|uo s feulno fess//sdny wo.j pepeojumod ‘v ‘220z ‘52680ST2


https://abmi.ca/home/publications/101-150/116
https://abmi.ca/home/publications/101-150/116
https://doi.org/10.1002/ecs2.4005

	Applying and testing a novel method to estimate animal density from motion-triggered cameras
	INTRODUCTION
	METHODS
	Using cameras as quadrats
	Data collection
	Components of the model
	Effective area of the camera field-of-view (AF)
	Time in field-of-view (TF)
	Time camera is operating (TO)
	Calculating density

	Testing assumptions of the TIFC method
	Assumption 1: Representative sampling of microhabitats
	Assumption 2: Movement not affected by the camera
	Assumption 3: Perfect detection near the camera

	Incorporating lure

	APPLICATION-MOOSE DENSITY IN WILDLIFE MANAGEMENT UNITS
	DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


